Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions?

Abstract

Labile traits are those that are not constrained by phylogeny and should respond directly to the environment through local adaptation or phenotypic plasticity. For example, voltinism (number of generations per year) is a labile trait that has been consistently related to latitude and, in particular, to temperature and photoperiod changes. Current trait databases include several labile traits that, at best, are coarsely coded to include potential intraspecific trait variability obtained from different literature sources. Given that these databases are used across large regions with contrasting environmental conditions or in small regions with particular environmental conditions, the reliability of these studies could be compromised at least for labile traits because of interpopulation variability. Based on a review of the literature on the life cycles of 317 aquatic insect species, we compared their types of voltinism in two regions with contrasting environmental conditions (the Mediterranean Basin and Scandinavia) with the information published by Tachet et al. (Invertébrés d’eau douce: systématique, biologie, écologie, 3rd edn. CNRS Éditions, Paris, 2010) (i.e., potential number of generations per year). We found the expected higher prevalence of multivoltine life cycles in the Mediterranean Basin, whereas univoltine and semivoltine life cycles showed trends of prominence in Scandinavia. In addition, the life-cycle profiles of the genera included in the Tachet et al. database (hereafter TAC) were situated between those found in the Mediterranean Basin and Scandinavia, suggesting that this database properly represents voltinism variability across Europe. However, the use of this database exclusively for the northern or southern regions may be challenging because TAC is not able to accurately represent the life cycles of the species in these regions, especially for univoltine and multivoltine species. Future studies in stream ecology should thus put efforts into quantifying and understanding the role of intra-taxon trait variability in community assembly, at least for labile traits, to better understand trait-environment relationships.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abrams PA, Leimar O, Nylin S, Wiklund C (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am Nat 147:381–395

    Article  Google Scholar 

  2. Adams DC, Church JO (2007) Amphibians do not follow Bergmann’s rule. Evolution 62:413–420

    Article  PubMed  PubMed Central  Google Scholar 

  3. Agüero-Pelegrín M, Ferreras-Romero M (2002) The cycle of Guadalgenus franzi (Aubert. 1963) (Plecoptera: Perlodidae) in the Sierra Morena Mountains (southern Spain): semivoltinism in seasonal streams of the Mediterranean Basin. Aquat Insect 24:237–245

    Article  Google Scholar 

  4. Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Perspect Plant Ecol 13:217–225

    Article  Google Scholar 

  5. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Article  Google Scholar 

  6. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  7. Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Article  Google Scholar 

  8. Bogan MT, Chester ET, Datry T, Murphy AL, Robson BJ, Ruhi A, Stubbington R, Whitney JE (2017) Resistance, resilience and community recovery in intermittent rivers and ephemeral streams. In: Datry T, Bonada N, Boulton AJ (eds) Intermittent rivers and ephemeral streams: ecology and management. Elsevier, Inc, Cambridge

    Google Scholar 

  9. Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers; geographically separated but ecological comparable freshwater systems. Hydrobiologia 719:1–29

    Article  Google Scholar 

  10. Bonada N, Dolédec S, Statzner B (2007a) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Glob Change Biol 13:1658–1671

    Article  Google Scholar 

  11. Bonada N, Rieradevall M, Prat N (2007b) Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589:91–106

    Article  Google Scholar 

  12. Bonada N, Dolédec S (2011) Do mediterranean genera not included in Tachet et al. 2002 have mediterranean trait characteristics? Limnetica 30:129–142

    Google Scholar 

  13. Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albariño RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalvez JF Jr, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AIY, Buria LM, Villanieva VD, Zúñiga MC, Pringle CM (2011) Global distribution of a key trophic guild contrast with common latitudinal diversity patterns. Ecology 92:1839–1848

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bradshaw WE, Holzapfel CM (2007) Evolution of animal photoperiodism. Annu Rev Ecol Evol Syst 38:1–25

    Article  Google Scholar 

  15. Braune E, Richter O, Soendgerath D, Suhling F (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Glob Change Biol 14:470–482

    Article  Google Scholar 

  16. Buffagni A (1997) Taxonomic and faunistic notes on the Caenis pseudorivulorum-group (Ephemeroptera, Caenidae). In: Landolt P, Sartori M (eds) Ephemeroptera and plecoptera: biology–ecology-systematics. MTL, Fribourg, pp 434–438

    Google Scholar 

  17. Charvet S, Statzner B, Usseglio-Polatera P, Dumont B (2000) Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshw Biol 43:277–296

    Article  Google Scholar 

  18. Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Article  Google Scholar 

  19. Clusella Trullas S, Van Wyk JH, Spotila JR (2007) Thermal melanism in ectotherms. J Therm Biol 32:235–245

    Article  Google Scholar 

  20. Colas F, Baudoin JM, Danger M, Usseglio-Polatera P, Wagner P, Devin S (2013) Synergistic impacts of sediment contamination and dam presence on river functioning. Freshw Biol 58:320–336

    Article  Google Scholar 

  21. Corbet PS (1980) Biology of Odonata. Annu Rev Entomol 25:189–217

    Article  Google Scholar 

  22. Corbet PS, Suhling F, Soendgerath D (2006) Voltinism of Odonata: a review. Int J Odonatol 9:1–44

    Article  Google Scholar 

  23. Cover MR, Seo JH, Resh VH (2015) Life history, burrowing behavior, and distribution of Neohermes filicornis (Megaloptera: Corydalidae), a long-lived aquatic insect in intermittent streams. West N Am Nat 75:474–490

    Article  Google Scholar 

  24. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  25. Datry T, Fritz K, Leigh C (2016) Challenges, developments and perspectives in intermittent river ecology. Freshw Biol 61:1171–1180

    Article  Google Scholar 

  26. Díaz AM, Alonso MLS, Gutiérrez M (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol 53:1–21

    Google Scholar 

  27. Dolédec S, Tilbian J, Bonada N (2017) Temporal variability in taxonomic and trait compositions of invertebrate assemblages in two climatic regions with contrasting flow regimes. Sci Total Environ 599–600:1912–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edwards AWF (1971) Distance between populations on the basis of gene frequencies. Biometrics 27:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreras-Romero M, García-Rojas AM (1995) Life-history patterns and spatial separation exhibited by the odonates from a Mediterranean inland catchment in southern Spain. Vie Milieu 45:157–166

    Google Scholar 

  30. Ferreras-Romero M, Márquez-Rodríguez J (2014) Odonatos asociados a cursos estacionales de Sierra Morena (sur de España). Bol Asoc Esp Entomol 38:172–184

    Google Scholar 

  31. Flenner I, Richter O, Suhling F (2010) Rising temperature and development in dragonfly populations at different latitudes. Freshw Biol 55:397–410

    Article  Google Scholar 

  32. Frimpong EA, Angermeier PL (2009) FishTraits: a database of ecological and life-history traits of freshwater fishes of the US. Fisheries 34:487–495

    Article  Google Scholar 

  33. Frutiger A, Imhof A (1997) Life cycle of Dinocras cephalotes and Perla grandis Plecoptera: Perlidae) at different temperature regimes. In: Landolt P, Sartori M (eds) Ephemeroptera and plecoptera: biology–ecology-systematics. MTL, Fribourg, pp 34–43

    Google Scholar 

  34. Garcia-Raventós A, Viza A, Tierno de Figueroa JM, Riera JL, Múrria C (2017) Seasonality, species richness and poor dispersion mediate intraspecific trait variability in stonefly community responses along an elevational gradient. Freshw Biol 62:916–928

    Article  CAS  Google Scholar 

  35. Heino J (2005) Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshw Biol 50:1578–1587

    Article  Google Scholar 

  36. Heino J, Schmera D, Eros T (2013) A macroecological perspective of trait patterns in stream communities. Freshw Biol 58:1539–1555

    Article  Google Scholar 

  37. Hjernquist MB, Söderman F, Inhemar Jönsson KI, Herczeg G, Laurila A, Merilä J (2012) Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. Oecologia 170:641–649

    Article  PubMed  PubMed Central  Google Scholar 

  38. Honek A, Kocourek F (1990) Temperature and development time in insects; a general relationship between thermal constants. Zool Jahrb 117:401–439

    Google Scholar 

  39. Jardine TD (2014) Organic matter sources and size structuring in stream invertebrate food webs across a tropical to temperate gradient. Freshw Biol 59:1509–1521

    Article  Google Scholar 

  40. Johansson F (2003) Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J Biogeogr 30:29–34

    Article  Google Scholar 

  41. Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  42. Kattge J, Bönisch G, Günther A, Wright I, Zanne A, Wirth C, Reich PB, The Try Consortium (2012) TRY—categorical traits dataset. data from: TRY—a global database of plant traits. TRY File Archive. http://www.try-db.org/TryWeb/Data.php#3

  43. Lange K, Townsend CR, Matthaei CD (2016) A trait-based framework for stream algal communities. Ecol Evol 6:23–36

    Article  PubMed  PubMed Central  Google Scholar 

  44. López-Rodríguez MJ, Tierno de Figueroa JM, Alba-Tercedor J (2009a) Life history, feeding and secondary production of two Nemouroidea species (Plecoptera, Insecta) in a temporary stream of Southern Iberian Peninsula. Fund Appl Limnol Arch Hydrobiol 175:161–170

    Article  CAS  Google Scholar 

  45. López-Rodríguez MJ, Tierno de Figueroa JM, Fenoglio S, Bo T, Alba-Tercedor J (2009b) Life strategies of 3 Perlodidae species (Plecoptera) in a Mediterranean seasonal stream in Southern Europe. J N Am Benthol Soc 28:611–625

    Article  Google Scholar 

  46. Magiafoglou A, Carew ME, Hoffmann AA (2002) Shifting clinal patterns and microsatellite variation in Drosophila serrata populations: a comparison of populations near the southern border of the species range. J Evol Biol 15:763–774

    Article  CAS  Google Scholar 

  47. Mellado-Díaz A, Suárez Alonso ML, Vidal-Abarca Gutiérrez MR (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol 53:1–21

    Google Scholar 

  48. Mims MC, Olden JD, Shattuck ZR, Poff NL (2010) Life history trait diversity of native freshwater fishes in North America. Ecol Freshw Fish 19:390–400

    Article  Google Scholar 

  49. Norling U (1984a) Photoperiodic control of larval development in Leucorrhina dubia (vander Linden): a comparison between populations from Northern and Southern Sweden (Anisoptera: Libellulidae). Odonatologica 13:529–550

    Google Scholar 

  50. Norling U (1984b) The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagri-onidae). Odonatologica 13:429–449

    Google Scholar 

  51. Nussey DH, Wilson AJ, Brommer JE (2007) The evolutionary ecology of individual phenotypic plasticity in wild populations. J Evol Biol 20:831–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Orlofske JM, Baird DJ (2014) Incorporating continuous trait variation into biomonitoring assessments by measuring and assigning trait values to individuals or taxa. Freshw Biol 59:477–490

    Article  Google Scholar 

  53. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872

    Article  Google Scholar 

  54. Parra I, Nicola GG, Asbjorn Vollestad L, Elvira B, Almodóvar A (2014) Latitude and altitude differentially shape life history trajectories between the sexes in non-anadromous brown trout. Evol Ecol 28:707–720

    Article  Google Scholar 

  55. Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North America lotic insects: traits-based ecological application in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755

    Article  Google Scholar 

  56. Riedl H (1983) Analysis of codling moth phenology in relation to latitude, climate and food availability. In: Brown VK, Hodek I (eds) Diapause and life cycle strategies in insects. Dr. W. Junk Publishers, The Hague, pp 233–252

    Google Scholar 

  57. Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25:257–265

    Article  Google Scholar 

  58. Roff DA (2002) The evolution of life histories. Chapman and Hall, New York

    Google Scholar 

  59. Sand K, Brittain JE (2001) Egg development in Dinocras cephalotes (Plecoptera, Perlidae) at its altitudinal limit Norway. In: Domínguez E (ed) Trends in research in Ephemeroptera and Plecoptera. Kluwer Academic and Plenum Publishers, New York, pp 209–216

    Google Scholar 

  60. Siefert A, Violle C, Chalmandrier L, Albert CH, Taudire A, Fajardo A, Aarssen LW, Baratolo C, Carlucci MB, Cianciaruso MV, Dantas VL, De Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JMC, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419

    Article  PubMed  PubMed Central  Google Scholar 

  61. Skoulikidis NT, Sabater S, Datry T, Morais MM, Buffagni A, Dörflinger G, Zogaris S, Sánchez-Montoya MM, Bonada N, Kalogianni E, Rosado J, Vardakas L, De Girolamo AM, Tockner K (2017) Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Sci Total Environ 577:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Statzner B, Bis B, Dolédec S, Usseglio-Polatera P (2001) Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl Ecol 2:73–85

    Article  Google Scholar 

  63. Statzner B, Dolédec S, Hugueny B (2004) Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27:470–488

    Article  Google Scholar 

  64. Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodivers Conserv 16:3609–3632

    Article  Google Scholar 

  65. Statzner B, Bonada N, Dolédec S (2008) Predicting the abundance of European stream macroinvertebrates using biological attributes. Oecologia 156:65–73

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sweeney BW (1984) Factors influencing life-history patterns of aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 56–100

    Google Scholar 

  67. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce: systématique, biologie, écologie, 3rd edn. CNRS Éditions, Paris

    Google Scholar 

  68. Tierno de Figueroa JM, López-Rodríguez MJ, Peralta-Maraver I, Fochetti R (2015) Life cycle, nymphal feeding and secondary production of Dinocras cephalotes (Plecoptera) in a Mediterranean river. Ann Soc Entomol Fr 51:259–265

    Article  Google Scholar 

  69. Tramontin AD, Sih A (1995) Experiments on the effects of food and density on voltinism in a stream-dwelling water strider (Aquarius remigis). Freshw Biol 34:61–67

    Article  Google Scholar 

  70. Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43:175–205

    Article  Google Scholar 

  71. Usseglio-Polatera P, Richoux P, Bournaud M, Tachet H (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Arch Hydrobiol 139:53–83

    Google Scholar 

  72. Verberk WCEP., Van Noordwijk CGE, Hildrew AG (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. J N Am Benthol Soc 32:531–547

    Google Scholar 

  73. Vieira NKM, Poff NL, Carlisle DM, Moulton IISR., Koski ML, Kondratieff BC (2006) A database of lotic invertebrate traits for North America. US Geological Survey Data Series, 187. http://pubs.water.usgs.gov/ds187

  74. Vila-Gispert A, Moreno-Amich R, García-Berthou E (2002) Gradients of life-history variation: an intercontinental comparison of fishes. Rev Fish Biol 12:417–427

    Article  Google Scholar 

  75. Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117

    Article  Google Scholar 

  76. Wöhrmann K, Tomiuk J (1988) Life cycles strategies and genotypic variability in populations of aphids. J Genet 67:43–52

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Manuel Tierno de Figueroa for providing life-cycle information from Mediterranean species and for insightful comments on an early version of the manuscript; and the anonymous reviewers for their suggestions which improved the manuscript. The second author has been supported by the European Communities 7th Framework Program Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Núria Bonada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonada, N., Dolédec, S. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions?. Aquat Sci 80, 7 (2018). https://doi.org/10.1007/s00027-017-0554-z

Download citation

Keywords

  • Aquatic macroinvertebrates
  • Biological traits
  • Intra-taxon variability
  • Climatic regions
  • Fuzzy coding
  • Life cycles
  • Tachet’s database