Advertisement

Aquatic Sciences

, 80:7 | Cite as

Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions?

  • Núria BonadaEmail author
  • Sylvain Dolédec
Research Article

Abstract

Labile traits are those that are not constrained by phylogeny and should respond directly to the environment through local adaptation or phenotypic plasticity. For example, voltinism (number of generations per year) is a labile trait that has been consistently related to latitude and, in particular, to temperature and photoperiod changes. Current trait databases include several labile traits that, at best, are coarsely coded to include potential intraspecific trait variability obtained from different literature sources. Given that these databases are used across large regions with contrasting environmental conditions or in small regions with particular environmental conditions, the reliability of these studies could be compromised at least for labile traits because of interpopulation variability. Based on a review of the literature on the life cycles of 317 aquatic insect species, we compared their types of voltinism in two regions with contrasting environmental conditions (the Mediterranean Basin and Scandinavia) with the information published by Tachet et al. (Invertébrés d’eau douce: systématique, biologie, écologie, 3rd edn. CNRS Éditions, Paris, 2010) (i.e., potential number of generations per year). We found the expected higher prevalence of multivoltine life cycles in the Mediterranean Basin, whereas univoltine and semivoltine life cycles showed trends of prominence in Scandinavia. In addition, the life-cycle profiles of the genera included in the Tachet et al. database (hereafter TAC) were situated between those found in the Mediterranean Basin and Scandinavia, suggesting that this database properly represents voltinism variability across Europe. However, the use of this database exclusively for the northern or southern regions may be challenging because TAC is not able to accurately represent the life cycles of the species in these regions, especially for univoltine and multivoltine species. Future studies in stream ecology should thus put efforts into quantifying and understanding the role of intra-taxon trait variability in community assembly, at least for labile traits, to better understand trait-environment relationships.

Keywords

Aquatic macroinvertebrates Biological traits Intra-taxon variability Climatic regions Fuzzy coding Life cycles Tachet’s database 

Notes

Acknowledgements

We would like to thank Manuel Tierno de Figueroa for providing life-cycle information from Mediterranean species and for insightful comments on an early version of the manuscript; and the anonymous reviewers for their suggestions which improved the manuscript. The second author has been supported by the European Communities 7th Framework Program Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua.

Supplementary material

27_2017_554_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 KB)

References

  1. Abrams PA, Leimar O, Nylin S, Wiklund C (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am Nat 147:381–395CrossRefGoogle Scholar
  2. Adams DC, Church JO (2007) Amphibians do not follow Bergmann’s rule. Evolution 62:413–420CrossRefPubMedGoogle Scholar
  3. Agüero-Pelegrín M, Ferreras-Romero M (2002) The cycle of Guadalgenus franzi (Aubert. 1963) (Plecoptera: Perlodidae) in the Sierra Morena Mountains (southern Spain): semivoltinism in seasonal streams of the Mediterranean Basin. Aquat Insect 24:237–245CrossRefGoogle Scholar
  4. Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Perspect Plant Ecol 13:217–225CrossRefGoogle Scholar
  5. Angilletta MJ, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268CrossRefGoogle Scholar
  6. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95CrossRefGoogle Scholar
  7. Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174CrossRefGoogle Scholar
  8. Bogan MT, Chester ET, Datry T, Murphy AL, Robson BJ, Ruhi A, Stubbington R, Whitney JE (2017) Resistance, resilience and community recovery in intermittent rivers and ephemeral streams. In: Datry T, Bonada N, Boulton AJ (eds) Intermittent rivers and ephemeral streams: ecology and management. Elsevier, Inc, CambridgeGoogle Scholar
  9. Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers; geographically separated but ecological comparable freshwater systems. Hydrobiologia 719:1–29CrossRefGoogle Scholar
  10. Bonada N, Dolédec S, Statzner B (2007a) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Glob Change Biol 13:1658–1671CrossRefGoogle Scholar
  11. Bonada N, Rieradevall M, Prat N (2007b) Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589:91–106CrossRefGoogle Scholar
  12. Bonada N, Dolédec S (2011) Do mediterranean genera not included in Tachet et al. 2002 have mediterranean trait characteristics? Limnetica 30:129–142Google Scholar
  13. Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albariño RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalvez JF Jr, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AIY, Buria LM, Villanieva VD, Zúñiga MC, Pringle CM (2011) Global distribution of a key trophic guild contrast with common latitudinal diversity patterns. Ecology 92:1839–1848CrossRefPubMedGoogle Scholar
  14. Bradshaw WE, Holzapfel CM (2007) Evolution of animal photoperiodism. Annu Rev Ecol Evol Syst 38:1–25CrossRefGoogle Scholar
  15. Braune E, Richter O, Soendgerath D, Suhling F (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Glob Change Biol 14:470–482CrossRefGoogle Scholar
  16. Buffagni A (1997) Taxonomic and faunistic notes on the Caenis pseudorivulorum-group (Ephemeroptera, Caenidae). In: Landolt P, Sartori M (eds) Ephemeroptera and plecoptera: biology–ecology-systematics. MTL, Fribourg, pp 434–438Google Scholar
  17. Charvet S, Statzner B, Usseglio-Polatera P, Dumont B (2000) Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshw Biol 43:277–296CrossRefGoogle Scholar
  18. Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309CrossRefGoogle Scholar
  19. Clusella Trullas S, Van Wyk JH, Spotila JR (2007) Thermal melanism in ectotherms. J Therm Biol 32:235–245CrossRefGoogle Scholar
  20. Colas F, Baudoin JM, Danger M, Usseglio-Polatera P, Wagner P, Devin S (2013) Synergistic impacts of sediment contamination and dam presence on river functioning. Freshw Biol 58:320–336CrossRefGoogle Scholar
  21. Corbet PS (1980) Biology of Odonata. Annu Rev Entomol 25:189–217CrossRefGoogle Scholar
  22. Corbet PS, Suhling F, Soendgerath D (2006) Voltinism of Odonata: a review. Int J Odonatol 9:1–44CrossRefGoogle Scholar
  23. Cover MR, Seo JH, Resh VH (2015) Life history, burrowing behavior, and distribution of Neohermes filicornis (Megaloptera: Corydalidae), a long-lived aquatic insect in intermittent streams. West N Am Nat 75:474–490CrossRefGoogle Scholar
  24. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172CrossRefGoogle Scholar
  25. Datry T, Fritz K, Leigh C (2016) Challenges, developments and perspectives in intermittent river ecology. Freshw Biol 61:1171–1180CrossRefGoogle Scholar
  26. Díaz AM, Alonso MLS, Gutiérrez M (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol 53:1–21Google Scholar
  27. Dolédec S, Tilbian J, Bonada N (2017) Temporal variability in taxonomic and trait compositions of invertebrate assemblages in two climatic regions with contrasting flow regimes. Sci Total Environ 599–600:1912–1921CrossRefPubMedGoogle Scholar
  28. Edwards AWF (1971) Distance between populations on the basis of gene frequencies. Biometrics 27:873–881CrossRefPubMedGoogle Scholar
  29. Ferreras-Romero M, García-Rojas AM (1995) Life-history patterns and spatial separation exhibited by the odonates from a Mediterranean inland catchment in southern Spain. Vie Milieu 45:157–166Google Scholar
  30. Ferreras-Romero M, Márquez-Rodríguez J (2014) Odonatos asociados a cursos estacionales de Sierra Morena (sur de España). Bol Asoc Esp Entomol 38:172–184Google Scholar
  31. Flenner I, Richter O, Suhling F (2010) Rising temperature and development in dragonfly populations at different latitudes. Freshw Biol 55:397–410CrossRefGoogle Scholar
  32. Frimpong EA, Angermeier PL (2009) FishTraits: a database of ecological and life-history traits of freshwater fishes of the US. Fisheries 34:487–495CrossRefGoogle Scholar
  33. Frutiger A, Imhof A (1997) Life cycle of Dinocras cephalotes and Perla grandis Plecoptera: Perlidae) at different temperature regimes. In: Landolt P, Sartori M (eds) Ephemeroptera and plecoptera: biology–ecology-systematics. MTL, Fribourg, pp 34–43Google Scholar
  34. Garcia-Raventós A, Viza A, Tierno de Figueroa JM, Riera JL, Múrria C (2017) Seasonality, species richness and poor dispersion mediate intraspecific trait variability in stonefly community responses along an elevational gradient. Freshw Biol 62:916–928CrossRefGoogle Scholar
  35. Heino J (2005) Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshw Biol 50:1578–1587CrossRefGoogle Scholar
  36. Heino J, Schmera D, Eros T (2013) A macroecological perspective of trait patterns in stream communities. Freshw Biol 58:1539–1555CrossRefGoogle Scholar
  37. Hjernquist MB, Söderman F, Inhemar Jönsson KI, Herczeg G, Laurila A, Merilä J (2012) Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. Oecologia 170:641–649CrossRefPubMedGoogle Scholar
  38. Honek A, Kocourek F (1990) Temperature and development time in insects; a general relationship between thermal constants. Zool Jahrb 117:401–439Google Scholar
  39. Jardine TD (2014) Organic matter sources and size structuring in stream invertebrate food webs across a tropical to temperate gradient. Freshw Biol 59:1509–1521CrossRefGoogle Scholar
  40. Johansson F (2003) Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J Biogeogr 30:29–34CrossRefGoogle Scholar
  41. Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140CrossRefGoogle Scholar
  42. Kattge J, Bönisch G, Günther A, Wright I, Zanne A, Wirth C, Reich PB, The Try Consortium (2012) TRY—categorical traits dataset. data from: TRY—a global database of plant traits. TRY File Archive. http://www.try-db.org/TryWeb/Data.php#3
  43. Lange K, Townsend CR, Matthaei CD (2016) A trait-based framework for stream algal communities. Ecol Evol 6:23–36CrossRefPubMedGoogle Scholar
  44. López-Rodríguez MJ, Tierno de Figueroa JM, Alba-Tercedor J (2009a) Life history, feeding and secondary production of two Nemouroidea species (Plecoptera, Insecta) in a temporary stream of Southern Iberian Peninsula. Fund Appl Limnol Arch Hydrobiol 175:161–170CrossRefGoogle Scholar
  45. López-Rodríguez MJ, Tierno de Figueroa JM, Fenoglio S, Bo T, Alba-Tercedor J (2009b) Life strategies of 3 Perlodidae species (Plecoptera) in a Mediterranean seasonal stream in Southern Europe. J N Am Benthol Soc 28:611–625CrossRefGoogle Scholar
  46. Magiafoglou A, Carew ME, Hoffmann AA (2002) Shifting clinal patterns and microsatellite variation in Drosophila serrata populations: a comparison of populations near the southern border of the species range. J Evol Biol 15:763–774CrossRefGoogle Scholar
  47. Mellado-Díaz A, Suárez Alonso ML, Vidal-Abarca Gutiérrez MR (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol 53:1–21Google Scholar
  48. Mims MC, Olden JD, Shattuck ZR, Poff NL (2010) Life history trait diversity of native freshwater fishes in North America. Ecol Freshw Fish 19:390–400CrossRefGoogle Scholar
  49. Norling U (1984a) Photoperiodic control of larval development in Leucorrhina dubia (vander Linden): a comparison between populations from Northern and Southern Sweden (Anisoptera: Libellulidae). Odonatologica 13:529–550Google Scholar
  50. Norling U (1984b) The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagri-onidae). Odonatologica 13:429–449Google Scholar
  51. Nussey DH, Wilson AJ, Brommer JE (2007) The evolutionary ecology of individual phenotypic plasticity in wild populations. J Evol Biol 20:831–844CrossRefPubMedGoogle Scholar
  52. Orlofske JM, Baird DJ (2014) Incorporating continuous trait variation into biomonitoring assessments by measuring and assigning trait values to individuals or taxa. Freshw Biol 59:477–490CrossRefGoogle Scholar
  53. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872CrossRefGoogle Scholar
  54. Parra I, Nicola GG, Asbjorn Vollestad L, Elvira B, Almodóvar A (2014) Latitude and altitude differentially shape life history trajectories between the sexes in non-anadromous brown trout. Evol Ecol 28:707–720CrossRefGoogle Scholar
  55. Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North America lotic insects: traits-based ecological application in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755CrossRefGoogle Scholar
  56. Riedl H (1983) Analysis of codling moth phenology in relation to latitude, climate and food availability. In: Brown VK, Hodek I (eds) Diapause and life cycle strategies in insects. Dr. W. Junk Publishers, The Hague, pp 233–252Google Scholar
  57. Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25:257–265CrossRefGoogle Scholar
  58. Roff DA (2002) The evolution of life histories. Chapman and Hall, New YorkGoogle Scholar
  59. Sand K, Brittain JE (2001) Egg development in Dinocras cephalotes (Plecoptera, Perlidae) at its altitudinal limit Norway. In: Domínguez E (ed) Trends in research in Ephemeroptera and Plecoptera. Kluwer Academic and Plenum Publishers, New York, pp 209–216CrossRefGoogle Scholar
  60. Siefert A, Violle C, Chalmandrier L, Albert CH, Taudire A, Fajardo A, Aarssen LW, Baratolo C, Carlucci MB, Cianciaruso MV, Dantas VL, De Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JMC, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419CrossRefPubMedGoogle Scholar
  61. Skoulikidis NT, Sabater S, Datry T, Morais MM, Buffagni A, Dörflinger G, Zogaris S, Sánchez-Montoya MM, Bonada N, Kalogianni E, Rosado J, Vardakas L, De Girolamo AM, Tockner K (2017) Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Sci Total Environ 577:1–18CrossRefPubMedGoogle Scholar
  62. Statzner B, Bis B, Dolédec S, Usseglio-Polatera P (2001) Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl Ecol 2:73–85CrossRefGoogle Scholar
  63. Statzner B, Dolédec S, Hugueny B (2004) Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27:470–488CrossRefGoogle Scholar
  64. Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodivers Conserv 16:3609–3632CrossRefGoogle Scholar
  65. Statzner B, Bonada N, Dolédec S (2008) Predicting the abundance of European stream macroinvertebrates using biological attributes. Oecologia 156:65–73CrossRefPubMedGoogle Scholar
  66. Sweeney BW (1984) Factors influencing life-history patterns of aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 56–100Google Scholar
  67. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce: systématique, biologie, écologie, 3rd edn. CNRS Éditions, ParisGoogle Scholar
  68. Tierno de Figueroa JM, López-Rodríguez MJ, Peralta-Maraver I, Fochetti R (2015) Life cycle, nymphal feeding and secondary production of Dinocras cephalotes (Plecoptera) in a Mediterranean river. Ann Soc Entomol Fr 51:259–265CrossRefGoogle Scholar
  69. Tramontin AD, Sih A (1995) Experiments on the effects of food and density on voltinism in a stream-dwelling water strider (Aquarius remigis). Freshw Biol 34:61–67CrossRefGoogle Scholar
  70. Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43:175–205CrossRefGoogle Scholar
  71. Usseglio-Polatera P, Richoux P, Bournaud M, Tachet H (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Arch Hydrobiol 139:53–83Google Scholar
  72. Verberk WCEP., Van Noordwijk CGE, Hildrew AG (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. J N Am Benthol Soc 32:531–547Google Scholar
  73. Vieira NKM, Poff NL, Carlisle DM, Moulton IISR., Koski ML, Kondratieff BC (2006) A database of lotic invertebrate traits for North America. US Geological Survey Data Series, 187. http://pubs.water.usgs.gov/ds187
  74. Vila-Gispert A, Moreno-Amich R, García-Berthou E (2002) Gradients of life-history variation: an intercontinental comparison of fishes. Rev Fish Biol 12:417–427CrossRefGoogle Scholar
  75. Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117CrossRefGoogle Scholar
  76. Wöhrmann K, Tomiuk J (1988) Life cycles strategies and genotypic variability in populations of aphids. J Genet 67:43–52CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
  2. 2.UMR 5023, LEHNA, Biodiversité et Plasticité dans les HydrosystèmesVilleurbanneFrance

Personalised recommendations