Aquatic Sciences

, Volume 79, Issue 4, pp 1009–1021 | Cite as

Altered food-web dynamics under increased nitrogen load in phosphorus deficient lakes

  • Gabriele TrommerEmail author
  • Monika Poxleitner
  • Patrick Lorenz
  • Eleftherios Bitzilekis
  • Aleksandre Gogaladze
  • Sabine Schultes
  • Herwig Stibor
Research Article


Atmospheric nitrogen deposition predominantly influences ecosystems by shifting their available nutrient budgets towards excess nitrogen conditions. In temperate lakes nitrogen is often naturally in excess and phosphorus is deficient, when compared with the optimal Redfield ratio of 16:1. To investigate effects of future increasing nitrogen conditions on lake plankton communities, we performed mesocosm experiments in three different nitrogen rich lakes, all characterised by high nitrogen to phosphorus ratios. In order to determine functional responses to increased nitrogen loading, we conducted six nitrogen fertilization treatments. Nitrogen fertilization was based upon existing nitrate and ammonium concentrations in natural wet deposition and multiple loadings of these concentrations. Despite the initial conditions of excess nitrogen, removal of additional nitrogen by the plankton community was observed in all of the lakes. In one lake, an increasing phosphorus limitation became visible in seston stoichiometry. Over all of the lakes and within each lake’s experimental nitrogen gradient, we found evidence for decreased mesozooplankton due to nitrogen enrichment. The negative responses of mesozooplankton to N enrichment were mainly restricted to cladocerans and nauplii. The results indicate that nitrogen enrichment within the magnitudes of projected future atmospheric nitrogen depositions may lead to a long-term reduction of mesozooplankton in phosphorus deficient lakes. The transfer of nitrogen enrichment effects on lower food-web dynamics could have consequences for higher trophic levels, such as fish.


Nitrogen Phosphorus Phytoplankton Zooplankton Lakes Food-web 



We wish to thank A. Wild and A. Weigert for technical support and laboratory analyses. We are grateful for the help of colleagues, students and the commune of Seeon for setting up the experiments. We thank the editors U. Sommer and S. Findlay, and two anonymous reviewers for their helpful remarks to improve this manuscript. This study was funded by the German Research Foundation to G.T. (DFG Tr 1126/1–1).

Supplementary material

27_2017_551_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 KB)
27_2017_551_MOESM2_ESM.eps (852 kb)
Supplementary material 2 (EPS 2300 KB)
27_2017_551_MOESM3_ESM.doc (45 kb)
Supplementary material 3 (DOC 45 KB)


  1. Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389CrossRefGoogle Scholar
  2. Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814CrossRefGoogle Scholar
  3. Andersen T, Saloranta TM, Tamminen T (2007) A statistical procedure for unsupervised classification of nutrient limitation bioassay experiments with natural phytoplankton communities. Limnol Oceanogr Methods 5:111–118CrossRefGoogle Scholar
  4. Berger SA, Diehl S, Kunz TJ, Albrecht D, Oucible AM, Ritzer S (2006) Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths. Limnol Oceanogr 51:1898–1905CrossRefGoogle Scholar
  5. Bergström A-K, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Change Biol 12:635–643CrossRefGoogle Scholar
  6. Bergström A-K, Blomqvist P, Jansson M (2005) Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol Oceanogr 50:987–994CrossRefGoogle Scholar
  7. Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen U-P, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53CrossRefPubMedGoogle Scholar
  8. Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norw J Zool 24:419–456Google Scholar
  9. Brett MT, Müller-Navarra DC, Park S-K (2000) Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnol Oceanogr 45:1564–1575CrossRefGoogle Scholar
  10. Brooks LJ (1968) The effects of prey size selection by lake planktivores. Syst Biol 17:273–291CrossRefGoogle Scholar
  11. Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255–1267CrossRefPubMedGoogle Scholar
  12. Carrillo P, Villar-Argaiz M, Medina-Sanchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 23:537–547CrossRefGoogle Scholar
  13. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  14. Collos Y, Harrison PJ (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Poll Bull 80:8–23CrossRefGoogle Scholar
  15. Crowley KF, McNeil BE, Lovett GM, Canham D, Driscoll CT, Rustad LE, Denny E, Hallett RA, Arthur MA, Boggs JL, Goodale CL, Kahl JS, Nulty SG, Ollinger SV, Pardo LH, Schaberg PG, Stoddard JL, Weand MP, Weathers KC (2012) Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems 15:940–957CrossRefGoogle Scholar
  16. Darchambeau F, Faerovig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346CrossRefPubMedGoogle Scholar
  17. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. Donald D, Bogard M, Finlay K, Bunting L, Leavitt PR (2013) Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea. PLoS One 8:e53277CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201CrossRefGoogle Scholar
  20. Elser JJ, Marzolf ER, Goldman CR (1990) Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can J Fish Aquat Sci 46:1468–1477CrossRefGoogle Scholar
  21. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580CrossRefPubMedGoogle Scholar
  22. Elser JJ, Hayakawa K, Urabe J (2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898–903CrossRefGoogle Scholar
  23. Elser JJ, Bracken MES, Cheland EE, Gruner DS, Harpole WS, Hildebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1–8CrossRefGoogle Scholar
  24. Elser JJ, Kyle M, Steger L, Nydick KR, Baron JS (2009a) Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90:3062–3073CrossRefPubMedGoogle Scholar
  25. Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009b) Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837CrossRefPubMedGoogle Scholar
  26. Elser JJ, Peace AL, Kyle M, Wojewodzic M, McCrackin ML, Andersen T, Hessen DO (2010) Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecol Lett 13:1256–1261CrossRefPubMedGoogle Scholar
  27. Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling spatial and temporal maxima. J Plankton Res 22:91–105CrossRefGoogle Scholar
  28. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892CrossRefPubMedGoogle Scholar
  29. Gersich FM, Hopkins DL (1986) Site-specific acute and chronic toxicity of ammonia to Daphnia magna Straus. Environ Toxicol Chem 5:443–447PubMedGoogle Scholar
  30. Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, Parker AE, Burkholder JM, Kana TM (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197CrossRefGoogle Scholar
  31. Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J, Reich PB, van Bodegom PM, Niinemets Ü (2012) Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9:3547–3569CrossRefGoogle Scholar
  32. Gundersen P, Callesen I, De Vries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407CrossRefGoogle Scholar
  33. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics software package for education and data analysis, version 2.17. Accessed 5 Jan 2014
  34. Hansen B, Bjornsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403CrossRefGoogle Scholar
  35. Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814CrossRefGoogle Scholar
  36. Hessen DO (2013) Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water 5:327–341CrossRefGoogle Scholar
  37. Hessen DO, Faerovig PJ, Andersen T (2002) Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83:1886–1898CrossRefGoogle Scholar
  38. Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) Ecological stoichiometry: an elementary approach using basic principles. Limnol Oceanogr 58:2219–2236CrossRefGoogle Scholar
  39. Holmes RM, Aminot A, Kerouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808CrossRefGoogle Scholar
  40. Ilic M (2014) Nutrient limitation under increased phosphorus limitation in two Bavarian lakes. Master Thesis, Ludwig-Maximilians University Munich pp. 61Google Scholar
  41. Kim I-N, Lee K, Gruber N, Karl DM, Bullister JL, Yang S, Kim T-W (2014) Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:1102–1106CrossRefPubMedGoogle Scholar
  42. Klausmeier C, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174CrossRefPubMedGoogle Scholar
  43. Legendre P, Legendre L (1998) Numerical ecology. 2nd English. Elsevier, AmsterdamGoogle Scholar
  44. Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595CrossRefGoogle Scholar
  45. Lovett GM, Arthur MA, Weathers KC, Fitzhugh RD, Templer PH (2013) Nitrogen addition increases carbon storage in soils, but not in trees, in an Eastern U.S. deciduous forest. Ecosystems 16:980–1001CrossRefGoogle Scholar
  46. McCarthy SDS, Rafferty SP, Frost PC (2010) Responses of alkaline phosphatase activity to phosphorus stress in Daphnia magna. J Exp Biol 213:256–261CrossRefPubMedGoogle Scholar
  47. Meunier CL, Boersma M, Wiltshire KH, Malzahn AM (2015) Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos 0:001–009Google Scholar
  48. Mulder K, Bowden WB (2007) Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia. Ecol Modell 202:427–440CrossRefGoogle Scholar
  49. Müller-Navarra DC (1995) Biochemical versus mineral limitation in Daphnia. Limnol Oceanogr 40:1209–1214CrossRefGoogle Scholar
  50. Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:64–77CrossRefGoogle Scholar
  51. Paasche E (1971) Effect of ammonia and nitrate on growth, photosynthesis, and Ribulose diphosphate carboxylase content of Dunaliella tertiolecta. Physiol Plant 25:294–299CrossRefGoogle Scholar
  52. Paerl H (2009) Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuaries Coasts 32:593–601CrossRefGoogle Scholar
  53. Pauli H-R (1989) A new method to estimate individual dry weights of rotifer. Hydrobiologia 186/187:355–361CrossRefGoogle Scholar
  54. Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82:1260–1269CrossRefGoogle Scholar
  55. Poxleitner M, Trommer G, Lorenz P, Stibor H (2016) The effect of increased nitrogen load on phytoplankton in a phosphorus-limited lake. Freshw Biol 61:1966–1980CrossRefGoogle Scholar
  56. Rabalais NN, Turner RE, Diaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537CrossRefGoogle Scholar
  57. Ragueneau O, Tréguer P (1994) Determination of biogenic silica in coastal waters: applicability and limits of the alkaline digestion method. Mar Chem 45:43–51CrossRefGoogle Scholar
  58. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437CrossRefGoogle Scholar
  59. Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–810CrossRefPubMedGoogle Scholar
  60. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefPubMedGoogle Scholar
  61. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262CrossRefPubMedGoogle Scholar
  62. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. PNAS 105:11254–11258CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sommer U (1992) Phosphorus-limited Daphnia: Intraspecific facilitation instead of competition. Limnol Oceanogr 37:966–973CrossRefGoogle Scholar
  64. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 4:433–471Google Scholar
  65. Sommer U, Adrian A, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448CrossRefGoogle Scholar
  66. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi: 10.1126/science.1259855 Google Scholar
  67. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  68. Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29CrossRefGoogle Scholar
  69. Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–684CrossRefPubMedGoogle Scholar
  70. Trommer G, Pondaven P, Siccha M, Stibor H (2012) Zooplankton-mediated nutrient limitation patterns in marine phytoplankton: an experimental approach with natural communities. Mar Ecol Prog Ser 449:83–94CrossRefGoogle Scholar
  71. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  72. Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: Is it real? Limnol Oceanogr 42:1436–1443CrossRefGoogle Scholar
  73. Vanni MJ (1987) Effects of food availability and fish predation on a zooplankton community. Ecol Monogr 57:61–87CrossRefGoogle Scholar
  74. Vitousek PM, Aber JD, Howarth RW, Likens GE, Pamela A, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  75. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15CrossRefPubMedGoogle Scholar
  76. Wacker A, von Elert E (2001) Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82:2507–2520CrossRefGoogle Scholar
  77. Watkins J, Rudstam L, Kristen H (2011) Length-weight regression for zooplankton biomass calculations—a review and a suggestion for standard equations. eCommons Cornell. Accessed 1 July 2013
  78. Wetzel RG, Likens GE (1991) Limnological analyses. 2nd edn. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department II Biology, Aquatic EcologyLudwig-Maximilians-University MunichPlanegg-MartinsriedGermany

Personalised recommendations