Skip to main content

Functional associations between microalgae, macrophytes and invertebrates distinguish river types

Abstract

Contemporary large-scale river ecology is grounded on the existence of patterns in the distribution of aquatic communities, structured by prevailing abiotic conditions. Here, we investigated the existence of functional consistent associations of traits (i.e., traits appearing consistently together at different sites and the same river type) between different biological elements of the aquatic community, assuming that species traits confer them advantages for certain environmental conditions but also within the aquatic community. If this is true, these trait associations should be consistently found in water bodies with similar characteristics (river types), defining different types of ecosystem functioning. To test this, 79 least-disturbed sites, belonging to five well-defined Portuguese river types and covering the longitudinal river gradient were used: headwaters of semi-arid streams, mountainous streams and northern-Atlantic climate streams, middle reaches and lowland large rivers. For each river type, we analyzed the strongest associations (via the Bray–Curtis coefficient) between diatoms, benthic invertebrates and macrophytes and traits that could be relevant to their interactions (e.g., invertebrate trophic groups, mobility/fixation ability of diatoms, macrophyte affinity to water) against a priori predictions. The strongest associations of traits changed over the river continuum with an increase in their complexity (number of associations) from headwaters to middle reaches and a decrease in lowland large rivers. These changes were not related to total richness, which was similar for all river types and over the continuum (ca. 100 taxa). In the three types of headwaters, there were also clear differences in associations among aquatic elements. The importance of riparian trees in small streams was not as high as expected while instream macrophytes were more relevant than predicted. This study revealed the existence of predictable functional associations that could serve as a basis for the functional assessment of running waters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aguiar FC, Ferreira MT, Pinto P (2002) Relative influence of environmental variables on macroinvertebrate assemblages from an Iberian basin. J N Am Benthol Soc 21:43–53

    Article  Google Scholar 

  2. Aguiar FC, Cerdeira JO, Martins MJ, Ferreira MT (2013) Riparian forests of Southwest Europe: are functional trait and species composition assemblages constrained by environment? J Veg Sci 24:628–638

    Article  Google Scholar 

  3. Aguiar F, Segurado P, Urbanič G, Cambra J, Chauvin C, Ciadamidaro S, Dörflinger G, Ferreira J, Germ M, Manolaki P, Minciardi MR, Munné A, Papastergiadou E, Ferreira MT (2014) Comparability of river quality assessment using macrophytes: a multi-step procedure to overcome biogeographical differences. Sci Total Environ 476(:):757–767

    Article  PubMed  Google Scholar 

  4. Allan JD (1983) Predator–prey relationships in streams. In: Barnes JR et al (eds) Ecology stream. Plenum Press, New York

    Google Scholar 

  5. Anderson C, Cabana G (2007) Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Freshw Sci 26:273–285

    CAS  Google Scholar 

  6. Barnes C, Jennings S, Polunin NVC, Lancaster JE (2008) The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia 155:227–235

    Article  PubMed  Google Scholar 

  7. Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ (2013) Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc R Soc 280:20131760. doi:10.1098/rspb.2013.1760

    Article  Google Scholar 

  8. Bornette G, Tabacchi E, Hupp C, Puijalon S, Rostan JC (2008) A model of plant strategies in fluvial hydrosystems. Freshw Biol 53(:):1692–1705

    Article  Google Scholar 

  9. Boulton AJ, Boyero L, Covich AP, Dobson M, Lake S, Pearson R (2008) Are tropical streams ecologically different from temperate streams? In: Dudgeon D (Ed) Tropical stream ecology Chap. 9. Academic Press, London, pp 257–283

    Chapter  Google Scholar 

  10. Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  11. Bruder A, Schindler MH, Moretti MS, Gessner MO (2014) Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders. Freshw Biol 59:438–449

    CAS  Article  Google Scholar 

  12. Chícharo MA, Chícharo L, Morais P (2006) Inter-annual differences of ichthyofauna structure of the Guadiana estuary and adjacent coastal area (SE Portugal/SW Spain): before and after Alqueva dam construction. Estuarine Coastal Shelf Sci 70:39–51

    Article  Google Scholar 

  13. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd, Plymouth

    Google Scholar 

  14. Coat S, Monti D, Bouchon C, Lepoint G (2009) Trophic relationships in a tropical stream food web by stable isotope analysis. Freshw Biol 54(:):1028–1041

    CAS  Article  Google Scholar 

  15. Comte J, del Giorgio PA (2011) Composition influences the pathway but not the outcome of the metabolic response of bacterioplankton to resource shifts. PLoS One 6:e25266

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Corenblit D, Steiger J, Gurnell AM, Naiman RJ (2009) Plants intertwine fluvial landform dynamics with ecological succession and natural selection: a niche construction perspective for riparian systems. Global Ecol Biogeogr 18(:):507–520

    Article  Google Scholar 

  17. Dangles O (2002) Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Can J Fish Aquat Sci 59(:):1–11

    Google Scholar 

  18. de Bello F, Lavorel S, Díaz S et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  19. Dolph CL, Huff DD, Chizinski CJ, Vondracek B (2011) Implications of community concordance for assessing stream integrity at three nested spatial scales in Minnesota, U.S.A. Freshw Biol 56:1652–1669

    Article  Google Scholar 

  20. Elosegi S, Sabater S (2013) Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712:129–143

    Article  Google Scholar 

  21. Esslemont G, Maher W, Ford P, Lawrence I (2007) Riparian plant material inputs to the Murray River, Australia: composition, reactivity, and role of nutrients. J Environ Qual 36(:):963–974

    CAS  Article  PubMed  Google Scholar 

  22. Feio MJ, Almeida SFP, Craveiro SC, Calado AJ (2007) Diatoms and macroinvertebrates provide consistent and complementary information on environmental quality. Fundam Appl Limnol/Archiv für Hydrobiol 168/3:247–258

    Article  Google Scholar 

  23. Feio MJ, Aguiar FC, Almeida SFP, Ferreira MT (2012) AQUAFLORA: a predictive model based on diatoms and macrophytes for streams water quality assessment. Ecol Indic 18:586–598

    CAS  Article  Google Scholar 

  24. Feio MJ, Aguiar FC, Almeida SFP, Ferreira J, Ferreira MT, Elias C, Serra SRS, Buffagni A, Cambra J, Chauvin C, Delmas F, Dörflinger G, Erba S, Flor N, Ferréol M, Germ M, Mancini L, Manolaki P, Marcheggiani S, Minciardi MR, Munné A, Papastergiadou E, Prat N, Puccinelli C, Rosebery J, Sabater S, Ciadamidaro S, Tornés E, Tziortzis I, Urbanic G, Vieira C (2014) Least disturbed conditions for European Mediterranean rivers. Sci Total Environ 476–477(:):745–756

    Article  PubMed  Google Scholar 

  25. Feminella JW, Hawkins CP (1995) Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J N Am Benthol Soc 14:465–509

    Article  Google Scholar 

  26. Fernandes MR, Aguiar FC, Pereira JM, Ferreira MT (2013) Spectral separability of riparian forests from small and medium-sized rivers across a latitudinal gradient using multispectral imagery. Int J Remote Sens 34(:):2375–2401

    Article  Google Scholar 

  27. Franco JA, Rocha Afonso ML (2003) Nova Flora de Portugal, vol. 3 Juncaceae-Orchidaceae. Escolar Editora, Lisbon, p 198

    Google Scholar 

  28. Freimann R, Bürgmann H, Findlay SEG, Robinson CT (2013) Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts. ISME J 7:2361–2373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Friberg N, Jacobsen D (1994) Feeding plasticity of two detritivore-shredders. Freshw Biol 32:133–142

    Article  Google Scholar 

  30. Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influencesand biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  31. Gette-Bouvarot M, Mermillod-Blondin F, Lemoine D, Delolme C, Danjean M, Etienne L, Volatier L (2015) The potential control of benthic biofilm growth by macrophytes—a mesocosm approach. Ecol Eng 75:178–186

    Article  Google Scholar 

  32. Graça MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393

    Article  Google Scholar 

  33. Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int Rev Hydrobiol 95:27–41

    Article  Google Scholar 

  34. Grubaugh JW, Wallace JB, Houston ES (1996) Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Can J Fish Aquat Sci 53:896–909

    Article  Google Scholar 

  35. Hardy CM, Krull ES, Hartley DM, Olivier RL (2010) Carbon source accounting for fish using combined DNA and isotope analyses in a regular lowland river. Mol Ecol 19:197–212

    CAS  Article  PubMed  Google Scholar 

  36. INAG IP (2008a) Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a Directiva Quadro da Água. Protocolo de amostragem e análise para os macroinvertebrados bentónicos. Ministério do Ambiente, Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.

  37. INAG IP (2008b) Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a Directiva Quadro da Água. Protocolo de amostragem e análise para fitobentos-diatomáceas. Ministério do Ambiente, Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.

  38. INAG IP (2008c) Manual para a avaliação biológica da qualidade da água em sistemas fluviais segundo a Directiva Quadro da Água. Protocolo de amostragem e análise para os macrófitos. Ministério do Ambiente, Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P.

  39. Jackson DA (1993) Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268:9–26

    Article  Google Scholar 

  40. Jacobsen D (1993) Trichopteran larvae as consumers of submerged angiosperms in running waters. Oikos 67:379–383

    Article  Google Scholar 

  41. Jacobsen D, Sandjensen K (2006) Variability of invertebrate herbivory on the submerged macrophyte Potamogeton perfoliatus. Freshw Biol 34:357–365

    Article  Google Scholar 

  42. Janauer GA, Schmidt-Mumm U, Reckendorfer W (2013) Ecohydraulics and aquatic macrophytes: assessing the relationship in river floodplains. In: Maddock I, Harby A, Kemp P, Wood P (eds) Ecohydraulics: an integrated approach. Wiley, Chichester

    Google Scholar 

  43. Johnson RK, Hering D (2009) Response of taxonomic groups in streams to gradients in resource and habitat characteristics. J Appl Ecol 46:175–186

    Article  Google Scholar 

  44. Johnson RK, Furse MT, Hering D, Sandin L (2007) Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshw Biol 52:939–958

    Article  Google Scholar 

  45. Junk WJ, Bayley PB, Sparks RE (1989) The Flood pulse concept in river floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  46. Lange K, Liess A, Piggott JJ, Townsend CR, Matthaei CD (2011) Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshw Biol 56:264–278

    Article  Google Scholar 

  47. Lau DCP, Leung KMY, Dudgeon D (2008) What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshw Biol 54:127–141

    Article  Google Scholar 

  48. Lite SJ, Bagstad KJ, Stromberg JC (2005) Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J Arid Environ 63:785–813

    Article  Google Scholar 

  49. Madritch MD, Cardinale BJ (2007) Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: a multi-site experiment along a latitudinal gradient. Plant Soil 292(:):147–159

    CAS  Article  Google Scholar 

  50. Marchant R, Mitchell P, Norris RH (1984) Distribution of benthic invertebrates along a disturbed section of the LaTrobe River, Victoria: an analysis based on numerical classification. Aust J Mar Freshwat Res 35:355–374

    Article  Google Scholar 

  51. Mihuc TB (1997) The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshw Biol 37:455–462

    Article  Google Scholar 

  52. Naiman RJ, Melillo JM, Lock MA, Ford TE, Reice SR (1987) Longitudinal patterns of ecosystem processes and community structure in a subartic river continuum. Ecology 68:1139–1156

    Article  Google Scholar 

  53. Newman RM (1991) Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J N Am Benthol Soc 10:89–114

    Article  Google Scholar 

  54. Novais MH, Morais MM, Rosado J, Dias LS, Hoffmann L, Ector L (2014) Diatoms in temporary and permanent watercourses in Southern Europe (Portugal). River Res Appl 30:1216–1232

    Article  Google Scholar 

  55. Ollinger SV (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol 189:375–394

    CAS  Article  PubMed  Google Scholar 

  56. Paavola R, Muotka T, Virtanen R, Heino J, Kreivi P (2003) Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshw Biol 48:1912–1923

    Article  Google Scholar 

  57. Paavola R, Muotka T, Virtanen R, Heino J, Jackson D, Maki-Petays A (2006) Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecol Appl 16:368–379

    Article  PubMed  Google Scholar 

  58. Passy SI (2007) Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat Bot 86:171–178

    Article  Google Scholar 

  59. Peckarsky BL (2006) Predator-prey interactions. In: Hauer R, Lamberti G (eds) Methods in stream ecology, 2nd edn. Academic Press, New York

    Google Scholar 

  60. Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: trait-based ecological applications in light of phylogenetic relationships. J North Am Benthol Soc 25:730–755

    Article  Google Scholar 

  61. Renöfält BM, Nilsson C, Jansson R (2005) Spatial and temporal patterns of species richness in a riparian landscape. J Biogeogr 32:2015–2037

    Article  Google Scholar 

  62. Reynoldson TB, Norris RH, Resh VH, Day KE, Rosenberg DM (1997) The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J N Am Benthol Soc 16:833–852

    Article  Google Scholar 

  63. Rimet F, Bouchez A (2012) Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl Manage Aquat Ecosyst 406:1–14

    Article  Google Scholar 

  64. Sand-Jensen K, Borum J (1991) Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41:137–175

    Article  Google Scholar 

  65. Sanpera-Calbet I, Lecerf A, Chauvet E (2009) Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshw Biol 54:1671–1682

    Article  Google Scholar 

  66. Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold Publishers, London

    Google Scholar 

  67. Sedell JR, Richey JE, Swanson FJ (1989) The river continumm concept: a basis for the expected ecosystem behavior of very large rivers? 49–55 (Ed: DP Didge). In: Proceedings Of the International Large River symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106:49–55

  68. Serra SRQ, Cobo F, Graça MAS, Dolédec S, Feio MJ (2016) Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol Indic 61:282–292

    Article  Google Scholar 

  69. Southwood TRE (1977) Habitat, the templet for ecological strategies. J Anim Ecol 46:337–365

    Article  Google Scholar 

  70. Statzner B, Higler B (1985) Questions and comments on the river continuum concept. Can J Fish Aquat Sci 42:1038–1044

    Article  Google Scholar 

  71. Steinman AD (1996) Effects of grazers on freshwater benthic algae. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, pp 341–373

    Chapter  Google Scholar 

  72. Stenroth K, Bohman I, Herrmann J (2010) The importance of terrestrial resource subsidies for shredders in open-canopy streams revealed by stable isotope analysis. Freshw Biol 56:470–480

    Google Scholar 

  73. Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276

    Article  PubMed  Google Scholar 

  74. Swan CM, Palmer MA (2006) Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. Oecologia 149:107–114

    Article  PubMed  Google Scholar 

  75. Székely AJ, Berga M, Langenheder S (2013) Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J 7:61–71

    Article  PubMed  Google Scholar 

  76. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce, Nouvelle edition. Centre National de la Recherche Scientifique Press, Paris

    Google Scholar 

  77. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    CAS  Article  Google Scholar 

  78. Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883

    Article  Google Scholar 

  79. Tornés E, Acuña V, Dahm CN, Sabater S (2015) Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network. J Phycol 51:133–143

    Article  PubMed  Google Scholar 

  80. Townsend CR, Doledec S, Scarsbrook MR (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37:367–387

    Article  Google Scholar 

  81. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  82. Watson A, Barmuta L (2011) Feeding-preference trials confirm unexpected stable isotope analysis results: freshwater macroinvertebrates do consume macrophytes. Mar Freshw Res 62:1248–1257

    CAS  Article  Google Scholar 

  83. Winterbourn MJ, Rounick JS, Cowie B (1981) Are New Zealand stream ecosystems really different? NZ J Mar Freshw Res 15:321–328

    Article  Google Scholar 

  84. Woodward G, Bonada N, Brown LE, Death RG, Durance I, Gray C, Hladyz S, Ledger ME, Milner AM, Ormerod SJ, Thompson RM, Pawar S (2016) The effects of climatic fluctuations and extreme events on running water ecosystems. Phil Trans R Soc B 371:20150274

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Fundação para a Ciência e a Tecnologia (Portugal)—FCT, for financial support through the strategic project UID/MAR/04292/2013 granted to MARE and to Centro de Estudos Florestais, Universidade de Lisboa, within UID/AGR/00239/2013; to the MARE-Marine and Environmental Sciences Centre and University of Coimbra; and to the Biology Department and Geobiotec research centre at the University of Aveiro. FCA received funding by the FCT post-doctoral Grant SFRH/BPD/112417/2015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria João Feio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 191 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feio, M.J., Almeida, S.F.P. & Aguiar, F.C. Functional associations between microalgae, macrophytes and invertebrates distinguish river types. Aquat Sci 79, 909–923 (2017). https://doi.org/10.1007/s00027-017-0541-4

Download citation

Keywords

  • Aquatic plants
  • Diatoms
  • Macroinvertebrates
  • Functional assessment
  • Riparian trees
  • Species traits