Aquatic Sciences

, Volume 79, Issue 1, pp 159–169 | Cite as

Methane emission from aquatic ecosystems of Mexico City

  • Karla Martinez-Cruz
  • Rodrigo Gonzalez-Valencia
  • Armando Sepulveda-Jauregui
  • Fernando Plascencia-Hernandez
  • Yadira Belmonte-Izquierdo
  • Frederic ThalassoEmail author
Research Article


Mexico City is a large city, populated by 8.8 million inhabitants. This population density, combined with poor wastewater management, results in aquatic ecosystems receiving a large volume of wastewater which may promote methane (CH4) emission. We measured water quality and CH4 emission from 11 aquatic ecosystems in Mexico City during 1 year, including reservoirs, rivers, lakes, canals and chinampas (system of floating garden on shallow lakes). The total CH4 emission from aquatic ecosystems was estimated as 3679 Mg CH4 year−1, which represents 3.5 % of the annual CH4 emission of Mexico City. The main contributors are chinampas (33 %), followed by lakes (27 %), reservoirs (19 %), rivers (12 %) and canals (9 %). Water quality indicators were positively correlated with CH4 emission, therefore a decrease in untreated wastewater discharge may result in a significant reduction of the greenhouse gas footprint of Mexico City, after a transitional period during which the organic content of the sediment would be degraded.


CH4 fluxes Urban aquatic ecosystem Trophic state Water quality 



This work was financially supported by the Mexican National Council of Science and Technology (CONACYT) and the Mexico City Institute of Science and Technology (ICYT-DF) through project grant ICYTDF-294/2009. Authors are grateful to the support received from the Water System of Mexico City (SACM) and particularly to Ramón Aguirre Díaz, General Director and to Ruben Pineda Migueles, Head of Unit. Authors K. Martinez-Cruz, R. Gonzalez-Valencia and Y. Belmonte-Izquierdo, received grant-aided support from CONACYT (Grant Numbers 233369, 266244 and 243319, respectively). The authors are thankful to N. Escobar-Orozco for technical assistance in sampling and analyzing samples. The authors also thank R. Ramirez-Vargas and J. Corona-Hernández for assistance on the elaboration of figures.


  1. Aguilar A, Espinosa A C, Caraballo C (2006) Xochimilco, un proceso de gestion participativa. In: Chapter 11 UNESCO. GDF, Mexico, DFGoogle Scholar
  2. Anthony KMW, Anthony P (2013) Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J Geophys Res Biogeosci 118:1015–1034. doi: 10.1002/jgrg.20087 CrossRefGoogle Scholar
  3. APHA (1999) Standard methods for the examination of water and wastewater. In: APHA 20 (ed) APHA, Washington, DCGoogle Scholar
  4. Armillas P (1971) Garden on swaps. Science 174:653–661. doi: 10.1126/science.174.4010.653 CrossRefPubMedGoogle Scholar
  5. Avila Lopez R (1991) Chinampas de Iztapalapa. D. F. Instituto Nacional de Antropología e Historia, Mexico City, DFGoogle Scholar
  6. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycl. doi: 10.1029/2004GB002238 Google Scholar
  7. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res Biogeosci 113:G02024. doi: 10.1029/2007JG000608 CrossRefGoogle Scholar
  8. Bastviken D, Santoro AL, Marotta H, Pinho LQ, Calheiros DF, Crill P, Enrich-Prast A (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ Sci Technol 44:5450–5455. doi: 10.1021/es1005048 CrossRefPubMedGoogle Scholar
  9. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50. doi: 10.1126/science.1196808 CrossRefPubMedGoogle Scholar
  10. Bellido JL, Peltomaa E, Ojala A (2011) An urban boreal lake basin as a source of CO2 and CH4. Environ Pollut 159:1649–1659. doi: 10.1016/j.envpol.2011.02.042 CrossRefGoogle Scholar
  11. Breña Puyol AF (2009) Urban hydrology. Universidad Autónoma Metropolitana. Accessed 20 Aug 2010 (in Spanish)
  12. Carlson RE (1977) Trophic state index for lakes. Limnol Oceanogr 22:361–369. doi: 10.4319/lo.1977.22.2.0361 CrossRefGoogle Scholar
  13. Casper P, Maberly SC, Hall GH, Finlay BJ (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49:1–19. doi: 10.1023/A:1006269900174 CrossRefGoogle Scholar
  14. Chen YH, Prinn RG (2006) Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J Geophys Res Atmos 111:D10307. doi: 10.1029/2005JD006058 Google Scholar
  15. CONAGUA (2011) Estadisticas del Agua en Mexico, edicion 2011. In: SEMARNAT, DF. Accessed 2 Aug 2014
  16. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292. doi: 10.1111/j.1758-2229.2009.00038.x CrossRefPubMedGoogle Scholar
  17. DelSontro T, Kunz MJ, Kempter T, Wuest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–9873. doi: 10.1021/es2005545 CrossRefPubMedGoogle Scholar
  18. Dlugokencky EJ, Masarie KA, Lang PM, Tans PP (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393:447–450. doi: 10.1038/30934 CrossRefGoogle Scholar
  19. Doorn MRJ, Towprayoon S, Manso Vieira SM, Irving W, Palmer C, Pipatti R, Wang C (2006) Chapter 6: wastewater treatment and discharge. In: 2006 IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, JapanGoogle Scholar
  20. Duchemin E, Lucotte M, Canuel R (1999) Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environ Sci Technol 33:350–357. doi: 10.1021/es9800840 CrossRefGoogle Scholar
  21. Fernandez N, Solano F (2005) Quality indexes and water contamination. Centro Publicaciones Universidad de Pamplona, Colombia (in Spanish) Google Scholar
  22. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz Mm Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: climate change 2007, the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  23. GalyLacaux C, Delmas R, Jambert C, Dumestre JF, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycl 11:471–483. doi: 10.1029/97GB01625 CrossRefGoogle Scholar
  24. Gessner MO, Hinkelmann R, Nuetzmann G, Jekel M, Singer G, Lewandowski J, Nehls T, Barjenbruch M (2014) Urban water interfaces. J Hydrol 514:226–232. doi: 10.1016/j.jhydrol.2014.04.021 CrossRefGoogle Scholar
  25. Gonzalez-Valencia R, Sepulveda-Jauregui A, Martinez-Cruz K, Hoyos-Santillan J, Dendooven L, Thalasso F (2014) Methane emissions from Mexican freshwater bodies: correlations with water pollution. Hydrobiologia 721:9–22. doi: 10.1007/s10750-013-1632-4 CrossRefGoogle Scholar
  26. Hernandez-Paniagua IY, Ramirez-Vargas R, Ramos-Gomez MS, Dendooven L, Avelar-Gonzalez FJ, Thalasso F (2014) Greenhouse gas emissions from stabilization ponds in subtropical climate. Environ Technol 35:727–734. doi: 10.1080/09593330.2013.848910 CrossRefPubMedGoogle Scholar
  27. Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, Silvola J, Martikainen PJ (2003) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621. doi: 10.1016/S0045-6535(03)00243-1 CrossRefPubMedGoogle Scholar
  28. INE (1997). Cuantificacion del potencial contaminante de los residuos solidos municipales. In: Instituto Nacional de Ecologia—Secretaria de Medio Ambiente y Recursos Naturales (INE-SEMARNAT), Accessed 1 Dec 2015
  29. INEGI (2006) Anuario Estadistico de los Estados Unidos Mexicanos 2006. In: INEGI. Accessed 12 Dec 2014
  30. INEGI (2010) Censo de poblacion y vivienda 2010. In: INEGI. Accessed 12 Dec 2014
  31. Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223. doi: 10.5194/bg-6-209-2009 CrossRefGoogle Scholar
  32. Keller M, Stallard RF (1994) Methane emission by bubbling from Gatun Lake, Panama. J Geophys Res Atmos 99:8307–8319. doi: 10.1029/92JD02170 CrossRefGoogle Scholar
  33. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823. doi: 10.1038/NGEO1955 CrossRefGoogle Scholar
  34. Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in artic Alaska. Hydrobiologia 240:23–36. doi: 10.1007/BF00013449 CrossRefGoogle Scholar
  35. Lampert W, Sommer U (2007) Limnoecology. Oxford University Press, OxfordGoogle Scholar
  36. Liikanen A, Flojt L, Martikainen P (2002) Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate. J Environ Qual 31:338–349. doi: 10.2134/jeq2002.3380 CrossRefPubMedGoogle Scholar
  37. Morehart CT (2012) Mapping ancient chinampa landscapes in the Basin of Mexico: a remote sensing and GIS approach. J Archaeol Sci 39:2541–2551. doi: 10.1016/j.jas.2012.03.001 CrossRefGoogle Scholar
  38. Municipal data (2010) Sistema de Aguas de la Ciudad de Mexico, Av. Jose Maria Izazaga 89, Col. Centro, C.P. 6080, Del. Cuauhtemoc, Mexico, DFGoogle Scholar
  39. Myhre G, Shindell D, Breon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: climate change 2013, the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, CambridgeGoogle Scholar
  40. National Institute of Standards and Technology (NIST) (2011) Chemistry web book. Accessed 11 Jan 2011
  41. Nguyen TD, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100(1–3):185–196. doi: 10.1007/s10533-010-9415-8 Google Scholar
  42. Nguyen TD, Silverstein S, Lundmark L, Reyier H, Crill P, Bastviken D (2012) Automated flux chamber for investigating gas flux at water–air interfaces. Environ Sci Technol 47(2):968–975. doi: 10.1021/es303848x Google Scholar
  43. NSF (2011) The water quality index. Monitoring the quality of surface waters. Accessed 2 Aug 2014
  44. Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ 59:328–337. doi: 10.1016/j.atmosenv.2012.05.031 CrossRefGoogle Scholar
  45. Ramesh R, Purvaja GR, Parashar DC, Gupta PK, Mitra AP (1997) Anthropogenic forcing on methane efflux from polluted wetlands (Adyar River) of Madras City, India. Ambio 26:369–374Google Scholar
  46. Rochette P, Eriksen-Hamel NS (2008) Chamber measurements of soil nitrous oxide flux: are absolute values reliable? Soil Sci Soc Am J 72:331–342. doi: 10.2136/sssaj2007.0215 CrossRefGoogle Scholar
  47. Rolston DE (1986) Gas Flux. In: Klute A (ed) Methods of soil analysis: part 1-physical and mineralogical methods. Soil Science Society of America, American Society of Agronomy, MadisonGoogle Scholar
  48. Rudd JWM, Hamilton RD (1978) Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol Oceanogr 23:337–348. doi: 10.4319/lo.1978.23.2.0337 CrossRefGoogle Scholar
  49. SACM (2007) Programa de manejo sustentable del agua en la Ciudad de Mexico. In: Sistema de Aguas de la Ciudad de Mexico (SACM). Accessed 2 Aug 2014
  50. Schrier-Uijl AP, Veraart AJ, Leffelaar PA, Berendse F, Veenendaal EM (2011) Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–279. doi: 10.1007/s10533-010-9440-7 CrossRefGoogle Scholar
  51. Schulz S, Matsuyama H, Conrad R (1997) Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol Ecol 22(3):207–213. doi: 10.1016/S0168-6496(96)00091-8 CrossRefGoogle Scholar
  52. SEMARNAT-INECC (2012) Quinta Comunicacion Nacional ante la Convencion Marco de las Naciones Unidas sobre el Cambio Climatico. In: SEMARNAT-INECC (ed), Accessed 2 Aug 2014
  53. Sepulveda-Jauregui A, Martinez-Cruz K, Strohm A, Anthony KMW, Thalasso F (2012) A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy. Limnol Oceanogr Meth 10:560–567. doi: 10.4319/lom.2012.10.560 CrossRefGoogle Scholar
  54. Sepulveda-Jauregui A, Walter Anthony KM, Martinez-Cruz K, Greene S, Thalasso F (2015) Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12:3197–3223. doi: 10.5194/bg-12-3197-2015 CrossRefGoogle Scholar
  55. Sharpe RR, Harper LA, Byers FM (2002) Methane emissions from swine lagoons in Southeastern US. Agric Ecosyst Environ 90:17–24. doi: 10.1016/S0167-8809(01)00305-X CrossRefGoogle Scholar
  56. SMA (2010) Inventory of greenhouse gas emissions. In: SMA, DF, Accessed 28 Feb 2015
  57. Sobek S, DelSontro T, Wongfun N, Wehrli B (2012) Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res L 39:L01401. doi: 10.1029/2011GL050144 CrossRefGoogle Scholar
  58. Todd RW, Cole NA, Casey KD, Hagevoort R, Auvermann BW (2011) Methane emissions from southern High Plains dairy wastewater lagoons in the summer. Feed Sci Technol 166(67):575–580. doi: 10.1016/j.anifeedsci.2011.04.040 CrossRefGoogle Scholar
  59. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298 CrossRefGoogle Scholar
  60. Verma A, Subramanian V, Ramesh R (1999) Day-time variation in methane emission from two tropical urban wetlands in Chennai, Tamil Nadu, India. Curr Sci 76:1020–1022Google Scholar
  61. Walsh CJ (2000) Urban impacts on the ecology of receiving waters: a framework for assessment, conservation and restoration. Hydrobiologia 431:107–114. doi: 10.1023/A:1004029715627 CrossRefGoogle Scholar
  62. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. doi: 10.1038/nature05040 CrossRefPubMedGoogle Scholar
  63. Walter KM, Smith LC, Chapin FS (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc A 365:1657–1676. doi: 10.1098/rsta.2007.2036 CrossRefGoogle Scholar
  64. Welch EB, Jacobi JM (2004) Pollutant effects in freshwater: applied limnology. Spon Press, LondonGoogle Scholar
  65. Wu L-C, Wei C-B, Yang S-S, Chang T-H, Pan H-W, Chung Y-C (2007) Relationship between carbon dioxide/methane emissions and the water quality/sediment characteristics of Taiwan’s main rivers. J Air Waste Manag Assoc 57:319–327. doi: 10.1080/10473289.2007.10465340 CrossRefPubMedGoogle Scholar
  66. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S (2006) Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci Total Environ 366:187–196. doi: 10.1016/j.scitotenv.2005.07.003 CrossRefPubMedGoogle Scholar
  67. Yang L-B, Li X-Y, Yan W-J, Ma P, Wang J-N (2012) CH4 Concentrations and emissions from three rivers in the Chaohu lake watershed in Southeast China. J Integr Agric 11:665–673. doi: 10.1016/S2095-3119(12)60054-9 CrossRefGoogle Scholar
  68. Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491. doi: 10.1038/nature13164 CrossRefPubMedGoogle Scholar
  69. Zhang S, Guo C, Wang C, Gu J, Wang P, Hui Y, Han B (2014) Detection of methane biogenesis in a shallow urban lake in summer. J Soils Sediments 14:1004–1012. doi: 10.1007/s11368-014-0858-8 CrossRefGoogle Scholar
  70. Zhao Y, Sherman B, Ford P, Demarty M, DelSontro T, Harby A, Tremblay A, Øverjordet BI, Zhao X, Hansen BH, Wu B (2015) A comparison of methods for the measurement of CO2 and CH4 emissions from surface water reservoirs: results from an international workshop held at Three Gorges Dam, June 2012. Limnol Oceanogr Meth 13:15–29. doi: 10.1002/lom3.10003 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Karla Martinez-Cruz
    • 1
    • 2
  • Rodrigo Gonzalez-Valencia
    • 1
  • Armando Sepulveda-Jauregui
    • 2
  • Fernando Plascencia-Hernandez
    • 1
  • Yadira Belmonte-Izquierdo
    • 1
  • Frederic Thalasso
    • 1
    Email author
  1. 1.Departamento de Biotecnologia y BioingenieriaCentro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN)Mexico DFMexico
  2. 2.Experimental LimnologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesStechlinGermany

Personalised recommendations