Skip to main content
Log in

Trace element stoichiometry of submerged macrophytes in Yangtze floodplain lakes and Yunnan plateau lakes (China)

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Trace element balance is a key parameter in ecological stoichiometry. However, little is known about trace element stoichiometry of submerged macrophytes. We hypothesized that lake nutrients (N and P) and taxonomy strongly affect tissue trace element (Al, As, Ba, Cd, Co, Cr, Li, Pb and Sr) composition and homeostasis of submerged macrophytes in Yangtze floodplain lakes and Yunnan plateau lakes (China). Submerged macrophytes had Co stoichiometric homeostasis in these two sets of lakes. Moreover, submerged macrophytes in Yangtze floodplain lakes had higher Cd stoichiometric homeostasis, whereas submerged macrophytes in Yunnan plateau lakes had higher Cr, Li and Pb stoichiometric homeostasis. Lake nutrients altered trace element composition of submerged macrophytes as shown by canonical correspondence analysis (CCA). Total nitrogen in water (WTN) positively correlated with tissue As and tissue Cd for all lake types, indicating WTN influenced the concentration and composition of tissue As and tissue Cd in submerged macrophytes. Canonical discriminant analysis (CDA) successfully discriminated among submerged macrophyte taxa, revealing there are significant differences in multielement composition of submerged macrophytes among taxonomy. Some similar relationships of taxa and trace elements between Yangtze floodplain lakes and Yunnan plateau lakes indicated that certain families of submerged macrophytes accumulate specific elements. Differences in relationships of taxa and trace elements between Yangtze floodplain lakes and Yunnan plateau lakes indicated that trace element composition of submerged macrophytes could be affected both by taxonomy and the ambient environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ågren GI (2004) The C:N: P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191

    Article  Google Scholar 

  • Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst 39:153–170

    Article  Google Scholar 

  • Ågren GI, Weih M (2012) Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytol 194:944–952

    Article  PubMed  Google Scholar 

  • Aller AJ, Bernal JL, Nozal M, Deban L (1990) Effects of selected trace elements on plant growth. J Sci Food Agric 51:447–479

    Article  Google Scholar 

  • Azizur Rahman M, Hasegawa H (2012) Arsenic in freshwater systems: influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Appl Geochem 27:304–314

    Article  CAS  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL et al (eds) Methods of soil analysis part 3: chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, pp 1085–1123

    Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2003) Variation in the shoot calcium content of angiosperms. J Exp Bot 54:1431–1446

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004) Phylogenetic variation in the shoot mineral concentration of angiosperms. J Exp Bot 55:321–336

    Article  CAS  PubMed  Google Scholar 

  • Cindrić IJ, Zeiner M, Kröppl M, Stingeder G (2011) Comparison of sample preparation methods for the ICP-AES determination of minor and major elements in clarified apple juices. Microchem J 99:364–369

    Article  Google Scholar 

  • Clabeaux BL, Navarro DA, Aga DS, Bisson MA (2011) Cd tolerance and accumulation in the aquatic macrophyte, Chara australis: potential use for charophytes in phytoremediation. Environ Sci Technol 45:5332–5338

    Article  CAS  PubMed  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • de Baar HJ, Saager PM, Nolting RF, van der Meer J (1994) Cadmium versus phosphate in the world ocean. Mar Chem 46:261–281

    Article  Google Scholar 

  • Demars BOL, Edwards AC (2007) Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply. Freshwater Biol 52:2073–2086

    Article  CAS  Google Scholar 

  • Elias M, Wellner A, Goldin-Azulay K, Chabriere E, Vorholt JA, Erb TJ, Tawfik DS (2012) The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 491:134–137

    Article  CAS  PubMed  Google Scholar 

  • Elser J, Andersen T, Baron J, Bergstrom A, Jansson M, Kyle M, Nydick K, Steger L, Hessen D (2009) Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–837

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608

    Article  CAS  PubMed  Google Scholar 

  • Frew RD, Hunter KA (1992) Influence of Southern Ocean waters on the cadmium-phosphate properties of the global ocean. Nature 360:144–146

    Article  CAS  Google Scholar 

  • Glibert PM (2012) Ecological stoichiometry and its implications for aquatic ecosystem sustainability. Curr Opin Environ Sust 4:272–277

    Article  Google Scholar 

  • Greger M, Kautsky L (1993) Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas, Stockholm, Sweden. Appl Geochem 8(S2):37–43

    Article  Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven J (2003) Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384

    Article  Google Scholar 

  • Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa H, Rahman MA, Kitahara K, Itaya Y, Maki T, Ueda K (2010) Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. Sci Total Environ 408:1684–1690

    Article  CAS  PubMed  Google Scholar 

  • Hendry KR, Rickaby REM, de Hoog JCM, Weston K, Rehkämper M (2008) Cadmium and phosphate in coastal Antarctic seawater: implications for Southern Ocean nutrient cycling. Mar Chem 112:149–157

    Article  CAS  Google Scholar 

  • Hernández LE, Gárate A, Carpena-Ruiz R (1997) Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 189:97–106

    Article  Google Scholar 

  • Hutchinson TC, Fedorenko A, Fitchko J, Kuja A, Van Loon J, Lichwa J (1975) Movement and compartmentation of nickel and copper in an aquatic ecosystem. In: Hemphill DD (ed) Trace Substances in Environmental Health, vol 9. Univ. of Missouri Press, Columbia, pp 89–105

    Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (1998) The structuring role of submerged macrophytes in lakes. Springer, New York

    Book  Google Scholar 

  • Karimi R, Folt CL (2006) Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecol Lett 9:1273–1283

    Article  PubMed  Google Scholar 

  • Karimi R, Chen CY, Pickhardt PC, Fisher NS, Folt CL (2007) Stoichiometric controls of mercury dilution by growth. Proc Natl Acad Sci USA 104:7477–7482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkhoff A, Fagan W, Elser J, Enquist B (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168:103–122

    Article  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL et al. (Editors), Methods of soil analysis part 3: chemical methods soil Science Society of America and American Society of Agronomy, Madison, pp 869–920

  • Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  PubMed  Google Scholar 

  • Kurosawa K, Egashira K, Tani M, Jahiruddin M, Moslehuddin AZM, Zulfikar Rahman M (2008) Variation in arsenic concentration relative to ammonium nitrogen and oxidation reduction potential in surface and groundwater. Commun Soil Sci Plan 39:1467–1475

    Article  CAS  Google Scholar 

  • Kurosawa K, Egashira K, Tani M (2013) Relationship of arsenic concentration with ammonium–nitrogen concentration, oxidation reduction potential and pH of groundwater in arsenic-contaminated areas in Asia. Phys Chem Earth A/B/C 58–60:85–88

    Article  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250

    Article  CAS  Google Scholar 

  • Li R, Dong M, Zhao Y, Zhang L, Cui Q, He W (2007) Assessment of water quality and identification of pollution sources of plateau lakes in Yunnan (China). J Environ Qual 36:291–297

    Article  CAS  PubMed  Google Scholar 

  • Li W, Cao T, Ni L, Zhang X, Zhu G, Xie P (2013) Effects of water depth on carbon, nitrogen and phosphorus stoichiometry of five submersed macrophytes in an in situ experiment. Ecol Eng 61:358–365

    Article  Google Scholar 

  • Niklas K, Owens T, Reich P, Cobb E (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642

    Article  Google Scholar 

  • Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751

    Article  CAS  Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci USA 99:4419–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad MNV, Sajwan KS, Naidu R (2006) Trace elements in the environment: Biogeochemistry, biotechnology, and bioremediation. CRC Press, Boca Raton, p 456

    Google Scholar 

  • Purchase D, Miles RJ, Young TWK (1997) Cadmium uptake and nitrogen fixing ability in heavy-metal-resistant laboratory and field strains of Rhizobium leguminosarum biovar trifolii. FEMS Microbiol Ecol 22:85–93

    Article  CAS  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Env Sci Tec 39:697–753

    Article  CAS  Google Scholar 

  • Raubenheimer D, Simpson S, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16

    Article  Google Scholar 

  • Rauser WE, Glover J (1984) Cadmium-binding protein in roots of maize. Can J Bot 62:1645–1650

    Article  CAS  Google Scholar 

  • Reich P, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-Ubach A, Sardans J, Perez-Trujillo M, Estiarte M, Penuelas J (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci USA 109:4181–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012a) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Article  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012b) The C:N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14:33–47

    Article  Google Scholar 

  • Scheffer M, Hosper S, Meijer M, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Schelske CL (2009) Eutrophication: focus on phosphorus. Science 324:722

    Article  CAS  PubMed  Google Scholar 

  • Scott G, William KP (1976) Cobalt and plant development. Plant Physiol 57:886–889

    Article  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  PubMed  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Wang C, Sun Q, Wang L (2009) Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Environ Toxicol 24:271–278

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, He B, Pan X, Zhang K, Wang C, Sun J, Yun Z, Jiang G (2010) Levels, trends and risk assessment of arsenic pollution in Yangzonghai Lake, Yunnan Province, China. Sci China Chem 53:1809–1817

    Article  CAS  Google Scholar 

  • Wang Z, Xia C, Yu D, Wu Z (2015) Low-temperature induced leaf elements accumulation in aquatic macrophytes across Tibetan Plateau. Ecol Eng 75:1–8

    Article  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willey N, Fawcett K (2006) A phylogenetic effect on strontium concentrations in angiosperms. Environ Exp Bot 57:258–269

    Article  CAS  Google Scholar 

  • Xia C, Yu D, Wang Z, Xie D (2014) Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecol Eng 70:406–413

    Article  Google Scholar 

  • Xing W, Wu HP, Hao BB, Liu GH (2013a) Stoichiometric characteristics and responses of submerged macrophytes to eutrophication in lakes along the middle and lower reaches of the Yangtze River. Ecol Eng 54:16–21

    Article  Google Scholar 

  • Xing W, Wu H, Hao B, Huang W, Liu G (2013b) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703

    Article  CAS  PubMed  Google Scholar 

  • Xing W, Wu H, Hao B, Liu G (2013c) Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale. Environ Sci Pollut Res 20:6999–7008

    Article  CAS  Google Scholar 

  • Xing W, Wu H, Shi Q, Hao B, Liu H, Wang Z, Liu G (2015) Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China). Sci Rep 5:10186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SB, Zhang JL, Slik JWF, Cao KF (2012) Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Glob Ecol Biogeogr 21(809–818):505

    CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank editor and two anonymous reviewers for their valuable suggestions. This study was supported by National Natural Science Foundation of China (31370479), National S & T Major Project (2012ZX07103003, 2013ZX07102005) and Youth Innovation Promotion Association of CAS (2011248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Wu, H., Hao, B. et al. Trace element stoichiometry of submerged macrophytes in Yangtze floodplain lakes and Yunnan plateau lakes (China). Aquat Sci 79, 89–98 (2017). https://doi.org/10.1007/s00027-016-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-016-0481-4

Keywords

Navigation