Aquatic Sciences

, Volume 79, Issue 1, pp 27–43 | Cite as

When riverine dissolved organic matter (DOM) meets labile DOM in coastal waters: changes in bacterial community activity and composition

  • Marine Blanchet
  • Olivier Pringault
  • Christos Panagiotopoulos
  • Dominique Lefèvre
  • Bruno Charrière
  • Jean-François Ghiglione
  • Camila Fernandez
  • Fran L. Aparicio
  • Cèlia Marrasé
  • Philippe Catala
  • Louise Oriol
  • Jocelyne Caparros
  • Fabien Joux
Research Article

Abstract

Heterotrophic bacterial communities in marine environments are exposed to a heterogeneous mixture of dissolved organic compounds with different bioreactivity that may control both their activity and composition. The coastal environment is an example of a mixing area where recalcitrant allochthonous organic matter from rivers can encounter labile organic matter from marine phytoplanktonic blooms. The objective of this study was to explore the effects of mixed qualities of dissolved organic matter (DOM) on bacterial community activity (BCA) and bacterial community composition (BCC) and to test for a priming effect when DOM sources are added in combination. Coastal marine bacterial communities were incubated separately with a mixture of amino acids and with natural riverine DOM or with both sources together for 42 days. Addition of amino acids alone or in combination with riverine DOM led to a similar stimulation of BCA compared to control condition, whereas addition of riverine DOM alone did not modify BCA compared to the control. On the contrary, BCC analyzed by 16S rRNA gene pyrosequencing was not affected by the addition of amino acids alone, but changed dramatically with riverine DOM alone or in combination with amino acids. Our results show that changes in BCA and BCC can be driven by different types of DOM, but that these changes are not necessarily coupled. Moreover, the addition of labile DOM did not modify the microbial decomposition of riverine DOM, nor the BCC, suggesting that a priming effect did not occur under these experimental conditions.

Keywords

Dissolved organic matter Biodegradation Coastal waters Bacterial community composition Priming effect 

Notes

Acknowledgments

This research was funded by the French program EC2CO/CNRS-INSU through the IMPEC project. Rhône River discharge data were provided by MOOSE (Mediterranean Oceanic Observing System on Environment) with the support of the “Agence de l’Eau Rhône-Méditerranée et Corse”. MB was supported by a PhD grant from the French Ministry of Research. C.M. and F.L. Aparicio received support from Ministerio de Economía y Competititvidad (DOREMI project, CTM2012-34294). The authors thank Nyree West for language improvements. We thank Ingrid Obernosterer for helpful discussions and two anonymous reviewers for their constructive comments that improved the manuscript. We are grateful to the BIO2MAR platform (http://bio2mar.obs-banyuls.fr) for providing technical support and access to instrumentation.

Supplementary material

27_2016_477_MOESM1_ESM.pptx (5.1 mb)
Supplementary material 1 (PPTX 5270 kb)

References

  1. Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) Humic substances in soil, sediment, and water. Wiley, New YorkGoogle Scholar
  2. Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ed. Ifremer, Méthodes d’analyse en milieu marin, p 188Google Scholar
  3. Anthony C (1982) The biochemistry of methylotrophs. Academic Press, LondonGoogle Scholar
  4. Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM (2015) Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348:331–333CrossRefPubMedGoogle Scholar
  5. Attermeyer K, Hornick T, Kayler ZE, Bahr A, Zwirnmann E, Grossart H-P, Premke K (2014) Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences 11:1479–1489CrossRefGoogle Scholar
  6. Attermeyer K, Tittel J, Allgaier M, Frindte K, Wurzbacher C, Hilt S, Kamjunke N, Grossart H-P (2015) Effects of light and autochthonous carbon additions on microbial turnover of allochthonous organic carbon and community composition. Microb Ecol 69:361–371CrossRefPubMedGoogle Scholar
  7. Bengtsson MM, Wagner K, Burns NR, Herberg ER, Wanek W, Kaplan LA, Battin TJ (2014) No evidence of aquatic priming effects in hyporheic zone microcosms. Sci Rep 4:5187CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108:19473–19481CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bianchi TS, Thornton DCO, Yvon-Lewis SA, King GM, Eglinton TI, Shields MR, Ward ND, Curtis J (2015) Positive priming of terrestrial derived dissolved organic matter in a freshwater microcosm system. Geophys Res Lett 42:5460–5467CrossRefGoogle Scholar
  10. Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131CrossRefGoogle Scholar
  11. Blanchet M, Pringaut O, Bouvy M, Catala P, Oriol L, Caparros J, Ortega E, Intertaglia L, West N, Agis M, Got P, Joux F (2015) Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon. Environ Sci Poll Res 22:13638–13653CrossRefGoogle Scholar
  12. Briand E, Pringault O, Jacquet S, Torréton J-P (2004) The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnol Oceanogr Methods 2:406–416CrossRefGoogle Scholar
  13. Campbell BJ, Kirchman DL (2013) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 7:210–220CrossRefPubMedGoogle Scholar
  14. Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Otero MP, Vergin K, Wheeler BR (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microb Ecol 30:19–36CrossRefGoogle Scholar
  15. Carslon CA, Hansell DA (2015) DOM sources, sinks, reactivity, and budget. In: Biogeochemistry of marine dissolved organic matter. (Eds., Hansell DA, Carslon CA). 2nd edition, Academic Press, San Diego. 65-126Google Scholar
  16. Catalán N, Kellerman AM, Peter H, Carmona F, Tranvik LJ (2015) Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnol Oceanogr 60:159–168CrossRefGoogle Scholar
  17. Cauwet G (1994) HTCO method for dissolved organic carbon analysis in seawater: influence of catalyst on blank estimation. Mar Chem 47:55–64CrossRefGoogle Scholar
  18. Clarke K, Gorley R (2006) Primer v6: User Manual/Tutorial In. Ltd, P.-E. (ed). Plymouth, UKGoogle Scholar
  19. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346CrossRefGoogle Scholar
  20. Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10CrossRefGoogle Scholar
  21. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697CrossRefPubMedPubMedCentralGoogle Scholar
  22. Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A (2013) Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613CrossRefPubMedGoogle Scholar
  23. de Haan H (1977) Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (the Netherlands). Limnol Oceanogr 22:38–44CrossRefGoogle Scholar
  24. del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Ann Rev Ecol System 29:503–541CrossRefGoogle Scholar
  25. Dittmar T (2015) Reasons behind the long-term stability of dissolved organic matter. In: Biogeochemistry of marine dissolved organic matter. (Eds., Hansell DA, Carslon CA). 2nd edition, Academic Press, San Diego. 65–126Google Scholar
  26. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125CrossRefPubMedPubMedCentralGoogle Scholar
  27. Druffel ERM, Williams PM, Bauer JE, Ertel JE (1992) Cycling of dissolved and particulate organic matter in the open ocean. J Geophys Res 97:15639–15659CrossRefGoogle Scholar
  28. Ducklow HW, Carlson CA (1992) Oceanic bacterial production. In: Marshall KC (ed) Advances in microbial ecology. Springer, US, pp 113–181CrossRefGoogle Scholar
  29. Durrieu de Madron X et al (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Progr Oceanogr 91:97–166CrossRefGoogle Scholar
  30. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  31. Farjalla VF, Marinho CC, Faria BM, Amado AM, de Esteves FDA, Bozelli RL, Giroldo D (2009) Synergy of fresh and accumulated organic matter to bacterial growth. Microb Ecol 57:657–666CrossRefPubMedGoogle Scholar
  32. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  33. Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087CrossRefGoogle Scholar
  34. Fonte ES, Amado AM, Meirelles-Pereira F, Esteves FA, Rosado AS, Farjalla VF (2013) The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems. Microb Ecol 66:871–878CrossRefPubMedGoogle Scholar
  35. Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R (2000) Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2:191–201CrossRefPubMedGoogle Scholar
  36. Ghiglione JF, Murray AE (2012) Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ Microbiol 14:617–629CrossRefPubMedGoogle Scholar
  37. Ghiglione JF, Conan P, Pujo-Pay M (2009) Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microb Lett 299:9–21CrossRefGoogle Scholar
  38. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245CrossRefPubMedGoogle Scholar
  39. Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho JC et al (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782CrossRefPubMedGoogle Scholar
  40. Gontikaki E, Thornton B, Huvenne VAI, Witte U (2013) Negative priming effect on organic matter mineralization in NE Atlantic slope sediments. PlosOne 8:e67722CrossRefGoogle Scholar
  41. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861CrossRefPubMedGoogle Scholar
  42. Guenet B, Danger M, Harrault L, Allard B, Jauset-Alcala M, Bardoux G, Benest D, Abbadie L, Lacroix G (2014) Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721:35–44CrossRefGoogle Scholar
  43. Haas BJ, Gevers D et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci 5:421–445CrossRefGoogle Scholar
  45. Hansell DA, Carslon CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean: new insights stimulated by a controversery. Oceanography 22:52–61CrossRefGoogle Scholar
  46. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212CrossRefGoogle Scholar
  47. Herlemann DPR, Manecki M, Meeske C, Pollehne F, Labrenz M, Schulz-Bull D, Dittmar T, Jürgens K (2014) Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments. PLoS One 9:e93945CrossRefPubMedPubMedCentralGoogle Scholar
  48. Holmes RM, Aminot A, Kérouel R, Hooker BA, Petersen BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fis Aquat Sci 56:1801–1808CrossRefGoogle Scholar
  49. Hotchkiss ER, Hall RO Jr, Baker MA, Rosi-Marshall EJ, Tank JL (2014) Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. J Geophys Res Biogeosci 119:982–995CrossRefGoogle Scholar
  50. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G et al (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599CrossRefPubMedGoogle Scholar
  51. Jones SEG, Newton RJ, MacMahon DD (2009) Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ Microbiol 1:2463–2472CrossRefGoogle Scholar
  52. Kellerman AM, Kothawala DN, Dittmar T, Tranvik LJ (2015) Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat Geosci 8:454–457CrossRefGoogle Scholar
  53. Koch BP, Kattner G, Witt M, Passow U (2014) Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile? Biogeosciences 11:4173–4190CrossRefGoogle Scholar
  54. Kothawala DN, von Wachenfeldt E, Koehler B, Tranvik LJ (2012) Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci Total Environ 433:238–246CrossRefPubMedGoogle Scholar
  55. Kothawala DN, Murphy KR, Stedmon CA, Weyhenmeyer GA, Tranvik LJ (2013) Inner filter correction of dissolved organic matter fluorescence. Limnol Oceanogr Methods 11:616–630CrossRefGoogle Scholar
  56. Kuehn KA, Francoeur SN, Findlay RH, Neely RK (2014) Priming in the microbial landscape: periphytic algal stimulation. Ecology 95:749–762CrossRefPubMedGoogle Scholar
  57. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498CrossRefGoogle Scholar
  58. Lawaetz AJ, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectr 63:936–940CrossRefGoogle Scholar
  59. Lidstrom M (2001) Aerobic, methylotrophic prokaryotes. In: Stackebrandt E (ed) The Prokaryotes. Springer, New YorkGoogle Scholar
  60. Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810CrossRefPubMedGoogle Scholar
  61. Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microb 8:1361–1370CrossRefGoogle Scholar
  62. Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Technol 44:9405–9412CrossRefPubMedGoogle Scholar
  63. Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 5:6557–6566CrossRefGoogle Scholar
  64. Panagiotopoulos C, Sempéré R, Para J, Raimbault P, Rabouille C Charrière B (2012) The composition and flux of particulate and dissolved carbohydrates from the Rhone River into the Mediterranean Sea. Biogeosciences 9:1827–1844Google Scholar
  65. Pujo-Pay M, Raimbault P (1994) Improvement of the wet oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters. Mar Ecol Prog Ser 105:203–207CrossRefGoogle Scholar
  66. Rappe MS, Vergin K, Giovannoni SJ (2000) Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232CrossRefPubMedGoogle Scholar
  67. Raymond PA, Spencer RGM (2015) Riverine DOM. In: Biogeochemistry of marine dissolved organic matter (Eds., Hansell DA, Carslon CA). 2nd edition, Academic Press, San Diego, pp 509–577Google Scholar
  68. Rocker D, Brinkhoff T, Grüner N, Dogs M, Simon M (2012) Composition of humic acid-degrading estuarine and marine bacterial communities. FEMS Microb Ecol 80:45–63CrossRefGoogle Scholar
  69. Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrasé C (2011) Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microbiol 77:7490–7498CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schloss PD, Westcott SL et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sempéré R, Charrière B, Van Wambeke F, Cauwet G (2000) Carbon inputs of the Rhône River to the Mediterranean Sea: biogeochemical implications. Global Biogeochem Cycles 14:669–681CrossRefGoogle Scholar
  73. Shimp RJ, Pfaender FK (1985) Influence of easily degradable naturally occurring carbon substrates on biodegradation of monosubstituted phenols by aquatic bacteria. Appl Environ Microbiol 49:394–401PubMedPubMedCentralGoogle Scholar
  74. Sjöstedt J, Koch-Schmidt P, Pontarp M, Canbäck B, Tunlid A, Lundberg P, Hagström Å, Riemann L (2012) Disturbance communities after an environmental biosphere of marine bacterioplankton. Appl Environ Microbiol 8:1361–1369CrossRefGoogle Scholar
  75. Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114Google Scholar
  76. Søndergaard M, Middelboe M (1995) A cross-system analysis of labile dissolved organic carbon. Mar Ecol Prog Ser 118:283–294CrossRefGoogle Scholar
  77. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Barofsky DF, Giovannoni SJ (2011) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 5:856–865CrossRefPubMedGoogle Scholar
  78. Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, Landry ZC, Giovanonni SJ (2011) One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6(8):e23973CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wagner K, Besemer K, Burns N, Battin TJ, Bengtsson MM (2015) Light availability affects stream biofilm bacterial community composition and function, but not diversity. Environ Microbiol. doi:10.1111/1462-2920.12913 PubMedCentralGoogle Scholar
  80. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Marine Blanchet
    • 1
  • Olivier Pringault
    • 2
  • Christos Panagiotopoulos
    • 3
  • Dominique Lefèvre
    • 3
  • Bruno Charrière
    • 3
    • 5
  • Jean-François Ghiglione
    • 1
  • Camila Fernandez
    • 1
  • Fran L. Aparicio
    • 4
  • Cèlia Marrasé
    • 4
  • Philippe Catala
    • 1
  • Louise Oriol
    • 1
  • Jocelyne Caparros
    • 1
  • Fabien Joux
    • 1
  1. 1.Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire OcéanologiqueSorbonne Universités, UPMC Univ Paris 06, CNRSBanyuls/MerFrance
  2. 2.UMR5119 Ecologie des systèmes marins côtiers (ECOSYM), CNRS, IRD, UM2, UM1Université Sciences et Techniques du Languedoc Montpellier 2Montpellier Cedex 5France
  3. 3.Aix Marseille Université, Mediterranean Institute of Oceanography (MIO), Université du Sud-Toulon-Var, 83587, CNRS-INSU/IRD UM 110Marseille Cedex 09France
  4. 4.Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37BarcelonaSpain
  5. 5.Centre de Formation et de Recherche sur l’Environnement Méditerranéen (CEFREM, UMR CNRS 5110), Bât. U, Université de PerpignanPerpignanFrance

Personalised recommendations