Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream

Abstract

We assessed the effects of rising temperature and presence of a dominant detritivore (Allogamus laureatus; Trichoptera, Limnephilidae) on the decomposition of submerged oak litter (Quercus robur L.) and associated detritivore and fungal communities in a mountain stream in central Portugal. It was divided longitudinally, with one half maintained at ambient temperature (mean = 12.4 °C) while the other was warmed ~3 °C above ambient temperature. Oak leaves in litter bags were incubated in both stream halves, with half of the bags containing one A. laureatus larva. Replicate bags were collected over 6 weeks to determine litter mass remaining and the detritivore and fungal communities. A. laureatus stimulated decomposition of oak litter and colonization by other shredders at ambient temperature. It also increased fungal biomass at increased temperature, and changed the community of fungi. Higher temperature inhibited A. laureatus activity, resulting in a substantial change in the strength of interactions within both fungal and detritivore assemblages, with important consequences for leaf litter decomposition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrahams MV, Mangel M, Hedges K (2007) Predator-prey interactions and changing environments: who benefits? Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 362:2095–2104

  2. American Public Health Association (APHA) (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

  3. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

  4. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37

  5. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell Publishing Ltd, Oxford

  6. Beisner EB, McCauley E, Wrona FJ (1997) The influence of temperature and food chain length on plankton predator––prey dynamics. Can J Fish Aquat Sci 54:586–595

  7. Brown JH, Gillooly JF, Allen AP, Savage VM, Geoffrey BW (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

  8. Canhoto C, de Lima JLMP, Traça de Almeida A (2013) Warming up a stream reach: design of a hydraulic and heating system. Limnol Oceanogr: Methods 11:410–417

  9. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

  10. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci 100:12219–12222

  11. Creed RP, Cherry RP, Pflaum JR, Wood CJ (2009) Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos 118:723–732

  12. Dang CK, Schindler M, Chauvet E, Gessner MO (2009) Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90:122–131

  13. Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41:1109–1115

  14. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 30:881–884

  15. Ferreira V, Canhoto C (2014) Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquat Sci 76:155–163

  16. Ferreira V, Chauvet E (2011a) Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167:279–291

  17. Ferreira V, Chauvet E (2011b) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Change Biol 17:551–564

  18. Ferreira V, Encalada AC, Graça MAS (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–962

  19. Friberg N, Dybkjær JB, Olafsson JS, Gislason GM, Larsen SE, Lauridsen TL (2009) Relationships between structure and function in streams contrasting in temperature. Freshw Biol 54:2051–2068

  20. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

  21. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

  22. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends Ecol Evol 25:325–331

  23. Gotthard K (2000) Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J Anim Ecol 69:896–902

  24. Graça MAS, Canhoto C (2006) Leaf litter processing in low order streams. Limnetica 25:1–10

  25. Graça MAS, Bärlocher F, Gessner MO (2005) Methods to study litter decomposition: a practical guide. Springer, The Netherlands

  26. Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669

  27. Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev Camb Philos Soc 84:39–54

  28. Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria, to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

  29. Hogg ID, Williams DD (1996) Response of stream invertebrates to a Global-Warming thermal regime: an ecosystem-level manipulation. Ecology 77:395–407

  30. IPCC (2014) Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1–32

  31. Jacobsen D, Schultz R, Encalada AC (1997) Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshw Biol 38:247–261

  32. Jonsson M, Malmqvist B (2003) Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134:554–559

  33. Miranda P, Coelho FES, Tomé AR, Valente MA (2002) 20th century Portuguese climate and climate scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate change in Portugal. Scenarios, impacts and adaptation measures. SIAM project. Gradiva Publications, Lisbon, pp 23–83

  34. Montoya JM, Raffaelli D (2010) Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 365:2013–2018

  35. Mouritsen KN, Tompkins DM, Poulin R (2005) Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146:476–483

  36. Nilsson LM, Otto C (1977) Effects of population density and of presence of Gammarus pulex L. (Amphipoda) on the growth larvae of Potamophylax cingulatus Steph. (Trichoptera). Hydrobiologia 54:109–112

  37. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

  38. Perkins DM, Reiss J, Yvon-Durocher G, Woodward G (2010) Global change and food webs in running waters. Hydrobiologia 657:181–198

  39. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

  40. Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshw Biol 4:343–368

  41. Raven JA (2003) Global change––contemporary concerns. Encyclopedia of Life Sciences

  42. Roy BA, Gusewell S, Harte J (2004) Response of plant pathogens and herbivores to a warming experiment. Ecology 85:2570–2581

  43. Rumbos CI, Stamopoulos D, Georgoulas G, Nikolopoulou E (2010) Factors affecting leaf litter decomposition by Micropterna sequax (Trichoptera: limnephilidae). Int Rev Hydrobiol 95:383–394

  44. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

  45. Stenseth N, Mysterud A (2002) Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. PNAS 99:13379–13381

  46. Strahler A (1957) Quantitative analysis of watershed geomorphology. Trans, Am Geophys Union 38:913–920

  47. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2002) Invertébrés d’eau douce. Systématique, biologie, écologie. CNRS Editions, Paris

  48. Taniguchi Y, Nakano S (2000) Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81:2027–2039

  49. Traill LW, Lim MLM, Sodhi NS, Bradshaw CJA (2010) Mechanisms driving change: altered species interactions and ecosystem function through global warming. J Anim Ecol 79:937–947

  50. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

  51. Vieira-Lanero R (2000) Las Larvas de los Tricopteros de Galicia. PhD thesis, Universidad de Santiago de Compostela

  52. Walther G-R (2010) Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 365:2019–2024

  53. Wiens JJ (2012) The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 366:2336–2350

  54. Wissinger SA, Sparks GB, Rouse GL, Brown WS, Steltzer H (1996) Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands. Ecology 77:2421–2430

  55. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling. Biol Rev 88:15–30

  56. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 365: 2093–2016

  57. Zar JH (1996) Biostatistical analysis. Prentice-Hall, New Jersey

Download references

Acknowledgments

We thank Cristina Docal for the ion chromatography analyses, and Ana Lírio and João Rosa for valuable help in the field. We also thank the Company Amado and Amado Lda., Coimbra, Portugal, for the help in the construction of the heating tanks and setup of the system in the stream and the Municipality of Lousã, Portugal, for their support and help in the setup of the hydraulic infrastructures and warming facilities. We gratefully acknowledge Prof. Brian Moss and two anonymous reviewers for their comments and suggestions on an earlier version of the manuscript. This study was supported by the European Regional Development Fund (ERDF) through the COMPETE––Operational Factors of Competitiveness Program (POFC-COMPETE) and national funds through FCT––Foundation for Science and Technology, under the project “Predicting the effect of global warming on stream ecosystems” (FCT Ref: PTDC/CLI/67180/2006; COMPETE Ref: FCOMP-01-0124-FEDER-007112). Financial support granted by the FCT to VF (references SFRH/BPD/34368/2006 and SFRH/BPD/76482/2011, program POPH/FSE) is gratefully acknowledged.

Author information

Correspondence to Cátia Domingos.

Appendices

Appendix 1

Taxa recorded in the study area during the experimental period, and their characterization into functional feeding groups (FFG). For Coleoptera, A indicates adult individuals and L indicates larvae.

Higher level Species FFG
Order trichoptera Allogamus laureatus Shredder
Catagapetus Grazer
Diplectrona felix Collector
F. Ecnomidae Predator
Glossosoma Grazer
Goera pilosa Grazer
Helicopsyche helicifex Grazer
Hydropsyche ambigua Collector
Lepidostoma hirtum Shredder
F. Lepidostomatidae Shredder
Plectronemia laetabilis Predator
F. Polycentropodinae Predator
Polycentropus Predator
Polycentropus corniger Predator
Rhyacophila lusitanica Predator
Sericostoma Shredder
F. Sericostomatidae Shredder (Generally)
Order ephemeroptera Acentrella sinaica Grazer
Baetis Grazer
Centroptilum Grazer
Ecdyonurus Grazer
Ephemerella Shredder/grazer
Habroleptoides Grazer
Habrophlebia Shredder
Order plecoptera Capnia Shredder
Chloroperla Shredder
Isoperla Shredder
Leuctridae Shredder
Nemoura Shredder
F. Nemouridae Shredders/collectors
Protonemura Shredder
Order coleoptera Chyphon (L) Grazer
Coelambus (A) Shredder/piercer
Coelostoma (A) No information
Copelatus (A) Shredder
Elmis (L) Grazer
Elodes (L) Grazer
Helophorus Shredder
Hydraena (A) Grazer
Macroplea (A) Shredder
Microcara (L) Grazer
Noterus (A) Shredder/predator
Octhebius (A) Grazer
Oulimnius (A) Grazer
Platambus (L) Shredder/piercer
Odonata Condulegaster Predator
Calopterix Predator
Order diptera Atherix Piercer
Tr. Chironomini Collector
sF. Clinocerinae Predator
Dixa Collector
Athichopogon No information
sF. Hemerodromiinae Predator
sF. Orthocladinae Grazer
Tr. Prosimuliini Collector
F. Rhagionidae No information
Tr Simuliini Collector
sF. Tanypodinae Predator
Tr. Tanytarsini Collector
Tipula Shredder
Class gastropoda Ancylus fluviatilis Grazer
Bythynella Grazer
Class hirudinea Erpobdella octoculata Collector
Acari   Parasite
Turbellaria Polycelis nigra and P. tenuis Predator
Class oligochaeta F. Naididae Collector
F. Tubificidae Collector

Appendix 2

Taxa recorded in the study area during the experimental period.

Fungal species
Alatospora acuminata
Alatospora pulchella
Anguillospora furtiva
Anguillospora filiformis
Articulospora tetracladia
Clavariopsis aquatica
Clavatospora longibrachiata
Culicidospora aquatica
Flagellospora curvula
Heliscus lugdunensis
Lemonniera terrestris
Lunulospora curvula
Margaritispora aquatica/Goniopila monticola
Tetrachaetum elegans
Tricladium chaetocladium
Tricladium splendens
Triscelophorus acuminatus
Triscelophorus monosporus
Unidentified tetraradiate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domingos, C., Ferreira, V., Canhoto, C. et al. Warming, and the presence of a dominant shredder, drive variation in decomposer communities in a mountain stream. Aquat Sci 77, 129–140 (2015). https://doi.org/10.1007/s00027-014-0378-z

Download citation

Keywords

  • Aquatic communities
  • Climate change
  • Ecosystem functioning
  • Allogamus laureatus
  • Species interactions