Aquatic Sciences

, Volume 77, Issue 1, pp 161–170 | Cite as

A global boom in hydropower dam construction

  • Christiane ZarflEmail author
  • Alexander E. Lumsdon
  • Jürgen Berlekamp
  • Laura Tydecks
  • Klement Tockner
Research Article


Human population growth, economic development, climate change, and the need to close the electricity access gap have stimulated the search for new sources of renewable energy. In response to this need, major new initiatives in hydropower development are now under way. At least 3,700 major dams, each with a capacity of more than 1 MW, are either planned or under construction, primarily in countries with emerging economies. These dams are predicted to increase the present global hydroelectricity capacity by 73 % to about 1,700 GW. Even such a dramatic expansion in hydropower capacity will be insufficient to compensate for the increasing electricity demand. Furthermore, it will only partially close the electricity gap, may not substantially reduce greenhouse gas emission (carbon dioxide and methane), and may not erase interdependencies and social conflicts. At the same time, it is certain to reduce the number of our planet’s remaining free-flowing large rivers by about 21 %. Clearly, there is an urgent need to evaluate and to mitigate the social, economic, and ecological ramifications of the current boom in global dam construction.


Biodiversity Energy River management Sustainability Climate change 



This research has been partially carried out within the Erasmus Mundus Joint Doctorate Program SMART ( funded by the EACEA and the EU-funded project BioFresh ( Dr. Ulrich Schwarz provided data for the Balkan region. William Darwell, Mark O. Gessner, Christopher Kyba, Bernhard Lehner, LeRoy Poff and Emily S. Bernhardt provided helpful comments. Madeleine Ammar collected data on worldwide hydropower investments.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

27_2014_377_MOESM1_ESM.pdf (3.5 mb)
Supplementary material 1 (PDF 3601 kb)
27_2014_377_MOESM2_ESM.xls (211 kb)
Supplementary material 2 (XLS 211 kb)


  1. Ansar A, Flyvberg B, Budzier A, Lunn D (2014) Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69:43–66CrossRefGoogle Scholar
  2. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev 11:1388–1413CrossRefGoogle Scholar
  3. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596CrossRefGoogle Scholar
  4. Clark S (2012) Zonal stats overlapping polys tool. Last accessed 8th Oct 2014
  5. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Global Environ Change 26:152–158CrossRefGoogle Scholar
  6. Crousillat E, Hamilton R, Antmann P (2010) Addressing the Electricity Access Gap. Background Paper for the World Bank Group Energy Sector Strategy. Last accessed 8th Oct 2014
  7. Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885CrossRefGoogle Scholar
  8. Dorling D (2007) Worldmapper Dataset 346: Electricity Access, SASI, University of Sheffield, UKGoogle Scholar
  9. Equator Principles Association (2013) The Equator Principles III, June 2013. Last accessed 8th Oct 2014
  10. Food and Agriculture Organisation (2009) Continental hydrological basins for Africa, North, Central and South America, Europe, the Near East, and South East Asia (derived from hydrosheds). Last accessed 8th Oct 2014
  11. Food and Agriculture Organisation (2011) World map of the major hydrological basins (derived from hydrosheds). Last accessed 8th Oct 2014
  12. Griffiths HI, Kryštufek B, Reed JM (2004) Balkan biodiversity: pattern and process in the European hotspot. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  13. Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–9611PubMedCrossRefGoogle Scholar
  14. International Commission on Large Dams (2011) World Register of Dams. Accessed 8 Oct 2014
  15. International Hydropower Association (2010) Hydropower sustainability assessment protocol. Last accessed 8th Oct 2014
  16. International Journal on Hydropower and Dams (2012) World Atlas and Industry Guide. WallingtonGoogle Scholar
  17. International Rivers, Banks and Financial Institutions (2010) The New Great Walls: A Guide to China’s Overseas Dam Industry. BerkeleyGoogle Scholar
  18. IPCC (2014) Annex III—technology-specific cost and performance parameters. In: Schlömer S (ed) Working group III, mitigation of climate change, of the intergovernmental panel on climate change. Last accessed 8th Oct 2014
  19. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Trans Am Geophys Union 89:93–94CrossRefGoogle Scholar
  20. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502CrossRefGoogle Scholar
  21. Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548CrossRefGoogle Scholar
  22. Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137PubMedGoogle Scholar
  23. Maidment DR (2002) Arc Hydro: GIS for Water Resources. ESRI Press, RedlandsGoogle Scholar
  24. McDonald K, Bosshard P, Brewer N (2009) Exporting dams: China’s hydropower industry goes global. J Environ Manag 90(Supplement 3):S294–S302CrossRefGoogle Scholar
  25. Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408PubMedCrossRefGoogle Scholar
  26. OECD (2012) Energy, OECD Green Growth Studies. OECD Publishing. doi: 10.1787/9789264115118-en
  27. Poff NL, Hart DD (2002) How dams vary and why it matters for the emerging science of dam removal. Bioscience 52:659–738CrossRefGoogle Scholar
  28. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359PubMedCrossRefGoogle Scholar
  29. Stone R (2010) Ecology severe drought puts spotlight on Chinese dams. Science 327:1311PubMedCrossRefGoogle Scholar
  30. The World Bank (2014a) Database World Development Indicators “Electricity production (kWh)”. Last accessed 8th Oct 2014
  31. The World Bank (2014b) Database World Development Indicators “Electricity production from renewable sources, excluding hydroelectric (kWh)”. Last accessed 8th Oct 2014
  32. The World Bank (2014c) Database World Development Indicators “Electricity production from hydroelectric sources (kWh)”. Last accessed 8th Oct 2014
  33. The World Bank (2014e) Database World Development Indicators “GNI per capita, Atlas method (current US$)”. Last accessed 8th Oct 2014
  34. The World Bank (2014f) Database World Development Indicators “GDP per capita, PPP (current international $)”. Last accessed 8th Oct 2014
  35. The World Bank, Private Participation in Renewable Energy Database (2014d) available online: Last accessed 8th Oct 2014
  36. UN Department of Economic and Social Affairs, Population Division (2013) World Population Prospects: The 2012 Revision. Last accessed 8th Oct 2014
  37. UN-Energy (2010) The Energy Challenge for Achieving the Millennium Development Goals. United Nations. Last accessed 8th Oct 2014
  38. UNEP (2012a) The Emissions Gap Report 2012. United Nations Environment Programme (UNEP). Nairobi. Last accessed 8th Oct 2014
  39. UNEP (2012b) The Future We Want. Outcome Document of the United Nations Conference on Sustainable Development (Rio + 20). Last accessed 8th Oct 2014
  40. United Nations Secretariat, Department of Economic and Social Affairs (2012) World Population Prospects: The 2012 Revision. Last accessed 8th Oct 2014
  41. U.S. Energy Information Administration (2014) International Energy Outlook 2014. Last accessed 8th Oct 2014
  42. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561PubMedCrossRefGoogle Scholar
  43. Wehrli B (2011) Climate science: renewable but not carbon-free. Nat Geosci 4:585–586CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Christiane Zarfl
    • 1
    • 4
    Email author
  • Alexander E. Lumsdon
    • 1
    • 2
  • Jürgen Berlekamp
    • 3
  • Laura Tydecks
    • 1
  • Klement Tockner
    • 1
    • 2
  1. 1.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
  3. 3.Institute of Environmental Systems ResearchUniversity of OsnabrückOsnabrückGermany
  4. 4.Center for Applied GeosciencesEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations