Aquatic Sciences

, Volume 77, Issue 1, pp 153–160 | Cite as

Angling baits and invasive crayfish as important trophic subsidies for a large cyprinid fish

  • Tea Bašić
  • J. Robert Britton
  • Michelle C. Jackson
  • Peter Reading
  • Jonathan Grey
Research Article


Invasive species and anthropogenic sources of allochthonous trophic subsidies can have substantial ecological consequences for freshwater ecosystems, including modifying the diet of consumers and altering food web structure. Here, the diet of an omnivorous cyprinid fish, European barbel Barbus barbus, was assessed in relation to the presence of invasive signal crayfish Pacifastacus leniusculus and pelletized fish-meal in four rivers in England. Pellets are often used in large quantities by river anglers and thus could provide an important trophic subsidy, not only to the fish but also indirectly via P. leniusculus. Carbon and nitrogen stable isotopes were used to estimate the proportion of diet assimilated from natural sources and from P. leniusculus and pellets by B. barbus of lengths between 420 and 800 mm. Pellets generally made a large contribution to the overall biomass of B. barbus (up to 59 % of population diet) and in the two rivers where they were present, P. leniusculus were also an important resource (up to 30 % of population diet). The proportion derived from macro-invertebrates (excluding P. leniusculus) was substantially lower. Stable isotope mixing models further demonstrated considerable intraspecific variability in B. barbus diet within the rivers, with pellets comprising up to 79 % of the biomass of individual B. barbus in rivers where P. leniusculus was absent. Where present, P. leniusculus effectively replaced and thus reduced the contribution of pellets to individual fish diet. Thus, isotopic evidence from three of the four rivers indicates that B. barbus populations are heavily reliant (>50 %) upon angler-introduced baits that act as an important allochthonous subsidy and will also prey upon invasive P. leniusculus where they are present.


Allochthonous Barbel Fishmeal Signal crayfish Stable isotopes 



We thank the Barbel Society for their support in the completion of the work.


  1. Arlinghaus R, Niesar N (2005) Nutrient digestibility of angling baits for carp, Cyprinus carpio, with implications for groundbait formulation and eutrophication control. Fish Man Ecol 12:91–97CrossRefGoogle Scholar
  2. Baras E (1995a) Seasonal activities of Barbus barbus L.: effect of temperature on time-budgeting. J Fish Biol 46:816–828Google Scholar
  3. Baras E (1995b) Thermal related variations of seasonal and daily spawning periodicity in Barbus barbus. J Fish Biol 46:915–917Google Scholar
  4. Beja PR (1996) An analysis of otter Lutra lutra predation on introduced American crayfish Procambarus clarkii in Iberian streams. J Appl Ecol 33:1156–1170CrossRefGoogle Scholar
  5. Blake MA, Hart PJB (1995) The vulnerability of juvenile signal crayfish to perch and eel predation. Freshw Biol 33:233–244CrossRefGoogle Scholar
  6. Bobeldyk AM, Lamberti GA (2010) Stream food web responses to a large omnivorous invader, Orconectes rusticus (Decapoda, Cambaridae). Crustaceana 83:641–657. doi: 10.1163/001121610X49103 CrossRefGoogle Scholar
  7. Britton JR, Pegg J (2011) Ecology of European Barbel Barbus barbus: implications for river, fishery, and conservation management. Rev Fish Sci 19:321–330. doi: 10.1080/10641262.2011.599886 CrossRefGoogle Scholar
  8. Britton JR, Davies GD, Harrod C (2010) Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biol Invasions 12:1533–1542. doi: 10.1007/s10530-009-9566-5 CrossRefGoogle Scholar
  9. Britton JR, Pegg J, Davies GD (2012) Spatial variation in the somatic growth of European barbel Barbus barbus: a UK perspective. Ecol Freshw Fish 22:21–29CrossRefGoogle Scholar
  10. Cherghou S, Khodari M, Yaâkoubi F, Benabid M, Badri A (2002) Contribution to study a barbel (Barbus barbus callensis Valenciennes, 1842) diet in Morrocain Medium-Atlas stream: oued Boufekrane. Revue des Sci de l’Eau 15:153–163Google Scholar
  11. Correia AM (2001) Seasonal and interspecific evaluation of predation by mammals and bird on the introduced red swamp crayfish Procambarus clarkii (Crustacea, Cambaridae) in a freshwater marsh (Portugal). J Zool 255:533–541CrossRefGoogle Scholar
  12. Corse E, Costedoat C, Chappaz R, Pech N, Martin JF, Gilles A (2010) A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol Ecol Res 10:96–108. doi: 10.1111/j.1755-0998.2009.02795.x CrossRefGoogle Scholar
  13. Coulas RA, Macisaac HJ, Dunlop W (1998) Selective predation on an introduced zooplankter (Bythotrephes cederstroemi) by lake herring (Coregonus artedii) in Harp Lake, Ontario. Freshw Biol 40:343–355CrossRefGoogle Scholar
  14. Demétrio JA, Gomes LC, Latini JD, Agostinho AA (2012) Influence of net cage farming on the diet of associated wild fish in a Neotropical reservoir. Aquaculture 330–333:172–178. doi: 10.1016/j.aquaculture.2011.11.026 CrossRefGoogle Scholar
  15. Ellis BK, Stanford JA, Goodman D, Stafford CP, Gustafson DL, Beauchamp DA, Chess DW, Craft JA, Deleray MA, Hansen BS (2011) Long-term effects of a trophic cascade in a large lake ecosystem. Proc Natl Acad Sci USA 108:1070–1075PubMedCentralPubMedCrossRefGoogle Scholar
  16. Fernandez-Jover D, Arechavala-Lopez P, Martinez-Rubio L, Tocher DR, Bayle-Sempere JT, Lopez-Jimenez JA, Martinez-Lopez FJ, Sanchez-Jerez P (2011a) Monitoring the influence of marine aquaculture on wild fish communities: benefits and limitations of fatty acid profiles. Aquac Environ Interact 2:39–47. doi: 10.3354/aei00029 CrossRefGoogle Scholar
  17. Fernandez-Jover D, Martinez-Rubio L, Sanchez-Jerez P, Bayle-Sempere JT, Lopez Jimenez JA, Martínez Lopez FJ, Bjørn PA, Uglem I, Dempster T (2011b) Waste feed from coastal fish farms: a trophic subsidy with compositional side-effects for wild gadoids. Estuar Coast Shelf S 91:559–568. doi: 10.1016/j.ecss.2010.12.009 CrossRefGoogle Scholar
  18. Garvey JE, Rettig JE, Stein RA, Lodge DM, Klosiewski SP (2003) Scale-dependent associations among fish Predation, littoral habitat, and distributions of crayfish species. Ecology 84:3339–3348CrossRefGoogle Scholar
  19. Grey J (2006) The use of stable isotope analyses in freshwater ecology: current awareness. Pol J Ecol 54:563–584Google Scholar
  20. Grey J, Waldron S, Hutchinson R (2004) The utility of carbon and nitrogen isotope analyses to trace contributions from fish farms to the receiving communities of freshwater lakes: a pilot study in Esthwaite Water, UK. Hydrobiologia 524:253–262CrossRefGoogle Scholar
  21. Grey J, Graham CT, Britton JR, Harrod C (2009) Stable isotope analysis of archived roach (Rutilus rutilus) scales for retrospective study of shallow lake responses to nutrient reduction. Freshw Biol 54:1663–1670. doi: 10.1111/j.1365-2427.2009.02215.x CrossRefGoogle Scholar
  22. Guan RZ, Wiles PR (1997) Ecological impact of introduced crayfish on benthic fishes in a British lowland river. Conserv Biol 11:641–647CrossRefGoogle Scholar
  23. Harmon JP, Ives AR, Moran NA (2009) Species response to environmental change: impacts of food web interactions and evolution. Science 323:1347–1350. doi: 10.1126/science.1167396 PubMedCrossRefGoogle Scholar
  24. Hein CL, Roth BM, Ives AR, Vander Zanden MJ (2006) Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Can J Fish Aquat Sci 63:383–393. doi: 10.1139/F05-229 CrossRefGoogle Scholar
  25. Hutchinson JJ, Trueman CN (2006) Stable isotope analyses of collagen in fish scales: limitations set by scale architecture. J Fish Biol 69:1874–1880. doi: 10.1111/j.1095-8649.2006.01234.x CrossRefGoogle Scholar
  26. Jackson MC, Grey J (2013) Accelerating rates of freshwater invasions in the catchment of the River Thames. Biol Invasions 15:945–951. doi: 10.1007/s10530-012-0343-5 CrossRefGoogle Scholar
  27. Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7:e31757. doi: 10.1371/journal.pone.0031757 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jackson MC, Allen R, Pegg J, Britton JR (2013) Do trophic subsidies affect the outcome of introductions of a non-native freshwater fish? Freshw Biol 58:2144–2153. doi: 10.1111/fwb.12197 CrossRefGoogle Scholar
  29. Jackson MC, Jones T, Milligan M, Sheath D, Taylor J, Ellis A, England J, Grey J (2014) Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshw Biol 59:1123–1135. doi: 10.1111/fwb.12333 CrossRefGoogle Scholar
  30. Jefferies RL (2000) Allochthonous inputs: integrating population changes and food-web dynamics. Trend Ecol Evol 15:19–22CrossRefGoogle Scholar
  31. Jones RI, Grey J, Sleep D, Quarmby C (1998) An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food web in loch ness. Proc R Soc Lond B 265:105–110. doi: 10.1098/rspb.1998.0270 CrossRefGoogle Scholar
  32. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, CornolGoogle Scholar
  33. Kouba A, Petrusek A, Kozák P (2014) Continental-wide distribution of crayfish species in Europe: update and maps. Knowl Manag Aquat Ecosyst 413:05CrossRefGoogle Scholar
  34. Lewin WC, Arlinghaus R, Mehner T (2006) Documented and potential biological impacts of recreational fishing: insights for management and conservation. Rev Fish Sci 14:305–367. doi: 10.1080/10641260600886455 CrossRefGoogle Scholar
  35. MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55CrossRefGoogle Scholar
  36. Marcarelli AM, Baxter CV, Mineau MM, Hall RO (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225PubMedCrossRefGoogle Scholar
  37. Marczak LB, Richardson JS, Thompson RM (2007) Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–148PubMedCrossRefGoogle Scholar
  38. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi: 10.1034/j.1600-0706.2003.12098.x CrossRefGoogle Scholar
  39. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. doi: 10.1038/35016500 PubMedCrossRefGoogle Scholar
  40. Niesar M, Arlinghaus R, Rennert B, Mehner T (2004) Coupling insights from a carp, Cyprinus carpio, angler survey with feeding experiments to evaluate composition, quality and phosphorus input of groundbait in coarse fishing. Fish Man Ecol 11:225–235CrossRefGoogle Scholar
  41. Nyström P, Stenroth P, Holmoqvist N, Berglund O, Larsson P, Granéli W (2006) Crayfish in lakes and streams: individual and population responses to predation, productivity and substratum availability. Freshw Biol 51:2096–2113. doi: 10.1111/j.1365-2427.2006.01641.x CrossRefGoogle Scholar
  42. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3):e9672. doi: 10.1371/journal.pone.0009672 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Pegg J, Britton JR (2011) Effects of inter- and intra-specific competition on the growth rates of juvenile European barbel Barbus barbus used in the stock enhancement of UK fisheries. Fish Res 112:8–12. doi: 10.1016/j.fishres.2011.08.003 CrossRefGoogle Scholar
  44. Perga ME, Gerdeaux D (2005) Are fish what they eat all year round? Oecologia 144:598–606PubMedCrossRefGoogle Scholar
  45. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72. doi: 10.1038/47023 CrossRefGoogle Scholar
  46. Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527. doi: 10.1007/s00442-004-1816-8 PubMedCrossRefGoogle Scholar
  47. Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ 13C and δ 15N among fish tissues: implications for the study of trophic interactions. Func Ecol 13:225–231CrossRefGoogle Scholar
  48. Piria M, Treer T, Aničić I, Safner R, Odak T (2005) The natural diet of five cyprinid fish species. Agric Conspec Sci 70:21–28Google Scholar
  49. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  50. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  51. Sato T, Watanabe K (2013) Do stage-specific functional responses of consumers dampen the effects of subsidies on trophic cascades in streams? J Anim Ecol. doi: 10.1111/1365-2656.12192 PubMedGoogle Scholar
  52. Tablado Z, Tella JL, Sánchez-Zapata JA, Hiraldo F (2010) The paradox of the long-term positive effects of a North American crayfish on a European community of predators. Conserv Biol 24:1230–1238PubMedCrossRefGoogle Scholar
  53. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158. doi: 10.1016/j.aquaculture.2008.08.015 CrossRefGoogle Scholar
  54. Thomas CL, Taylor CA (2013) Scavenger or predator? Examining a potential predator–prey relationship between crayfish and benthic fish in stream food webs. Freshw Sci 32:1309–1317. doi: 10.1899/12-169.1 CrossRefGoogle Scholar
  55. Vander Zanden MJ, Rasmussen JB, Casselman JM (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–467CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Tea Bašić
    • 1
  • J. Robert Britton
    • 1
  • Michelle C. Jackson
    • 1
    • 2
  • Peter Reading
    • 3
  • Jonathan Grey
    • 4
  1. 1.Faculty of Science and Technology, Centre for Conservation Ecology and Environmental SciencesBournemouth UniversityDorsetUK
  2. 2.Department of Zoology and Entomology, Centre for Invasion BiologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Barbel SocietyLancasterUK
  4. 4.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations