Skip to main content

Phosphorus in sediments of high-elevation lakes in the Sierra Nevada (California): implications for internal phosphorus loading

Abstract

In high-elevation lakes of the Sierra Nevada (California), increases in phosphorus (P) supply have been inferred from changes in phytoplankton growth during summer. To quantify rates of sediment P release to high-elevation Sierran lakes, we performed incubations of sediment cores under ambient and reducing conditions at Emerald Lake and analyzed long-term records of lake chemistry for Emerald and Pear lakes. We also measured concentrations of individual P forms in sediments from 50 Sierra Nevada lakes using a sequential fractionation procedure to examine landscape controls on P forms in sediments. On average, the sediments contained 1,445 µg P g−1, of which 5 % was freely exchangeable, 13 % associated with reducible metal hydroxides, 68 % associated with Al hydroxides, and the remaining 14 % stabilized in recalcitrant pools. Multiple linear regression analysis indicated that sediment P fractions were not well correlated with soluble P concentrations. In general, sediments behaved as net sinks for P even under reducing conditions. Our findings suggest that internal P loading does not explain the increase in P availability observed in high-elevation Sierran lakes. Rather, increased atmospheric P inputs and increased P supply via dissolved organic C leaching from soils may be driving the observed changes in P biogeochemistry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agemian H (1997) Determination of nutrients in aquatic sediments. In: Mudroch A, Azcue JM, Mudroch P (eds) Manual of physico-chemical analysis of aquatic sediments. CRC Press, USA, pp 175–227

    Google Scholar 

  2. Amirbahman A, Pearce AR, Bouchard RJ, Norton SA, Kahl JS (2003) Relationship between hypolimnetic phosphorus and iron release from eleven lakes in Maine, USA. Biogeochemistry 65:369–385

    Article  CAS  Google Scholar 

  3. Anthony JL, Lewis WM (2012) Low boundary layer response and temperature dependence of nitrogen and phosphorus releases from oxic sediments of an oligotrophic lake. Aquat Sci 74:611–617

    Article  CAS  Google Scholar 

  4. Böstrom B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170:229–244

    Article  Google Scholar 

  5. Brown AD, Lund LJ, Lueking MA (1990) Integrated soil processes studies at Emerald Lake watershed. Final Report, California Air Resources Board contract A5-204-32

  6. Burkins DL, Blum JD, Brown K, Reynolds RC, Erel Y (1999) Chemistry and mineralogy of a granitic, glacial soil chronosequence, Sierra Nevada Mountains, California. Chem Geol 162:1–14

    Article  CAS  Google Scholar 

  7. Caraco NF, Cole JJ, Likens GE (1993) Sulfate control of phosphorus availability in lakes. A test and re-evaluation of Hasler and Einsele’s model. Hydrobiologia 253:275–280

    Article  CAS  Google Scholar 

  8. Carey CC, Rydin E (2011) Lake trophic status can be determined by the depth distribution of sediment phosphorus. Limnol Oceanogr 56:2051–2063

    Article  CAS  Google Scholar 

  9. Celi L, Barberis E (2005) Abiotic stabilization of organic phosphorus in the environment. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Cambridge, MA, pp 113–132

  10. Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236

    Article  Google Scholar 

  11. Farmer VC, Wilson MJ (1970) Experimental conversion of biotite to hydrobiotite. Nature 226:841–842

    Article  CAS  PubMed  Google Scholar 

  12. Frossard E, Stewart JWB, Starnaud RJ (1989) Distribution and mobility of phosphorus in grassland and forest soils of Saskatchewan. Can J Soil Sci 69:401–416

    Article  Google Scholar 

  13. Gächter R, Muller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol Oceanogr 48:929–933

    Article  Google Scholar 

  14. Gächter R, Meyer JS, Mares A (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol Oceanogr 33:1542–1558

    Article  Google Scholar 

  15. Gillespie AR, Zehfuss PH (2004) Glaciations of the Sierra Nevada, California, USA. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations-extent and chronology, part II: North America. Development in Quaternary science 2. Elsevier

  16. Hasler AD, Einsele WG (1948) Fertilization for increasing productivity of natural inland waters. Trans N Am Wildl Conf 13:527–555

    Google Scholar 

  17. Heard AM (2013) Global change and mountain lakes: establishing nutrient criteria and critical loads for Sierra Nevada lakes. Ph.D. dissertation, University of California, Riverside

  18. Hjorth T (2004) Effects of freeze-drying on partitioning patterns of major elements and trace metals in lake sediments. Anal Chim Acta 526:95–102

    Article  CAS  Google Scholar 

  19. Homyak PM, Sickman JO, Melack JM (2014) Pools, transformations, and sources of P in high-elevation soils: implications for nutrient transfer to Sierra Nevada lakes. Geoderma 217–218:65–73

    Article  Google Scholar 

  20. Huntington GL, Akeson MA (1987) Soil resource inventory of Sequoia National Park Central Part. Department of Interior National Park Service, California, US Order No. 8005-2-0002

  21. Hupfer M, Rube B, Schmieder P (2004) Origin and diagenesis of polyphosphate in lake sediments: a 31P-NMR study. Limnol Oceanogr 49:1–10

    Article  CAS  Google Scholar 

  22. Jassby AD, Powell TM, Goldman CR (1990) Interannual fluctuations in primary productivity: direct physical effects and the trophic cascade at Castle Lake, California. Limnol Oceanogr 35:1021–1038

    Article  CAS  Google Scholar 

  23. Jensen HS, Andersen FO (1992) Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol Oceanogr 37:577–589

    Article  Google Scholar 

  24. Kim J (2005) A projection of the effects of climate change induced by increased CO2 on extreme hydrologic events in the western US. Clim Change 68:153–168

    Article  CAS  Google Scholar 

  25. Knowles N, Dettinger MD, Cayan DR (2006) Trends in snowfall versus rainfall in the Western United States. J Clim 19:4545–4559

    Article  Google Scholar 

  26. Kopacek J, Prochazkova L, Stuchlik E, Blazka P (1995) The nitrogen-phosphorus relationship in mountain lakes—influence of atmospheric input, watershed, and pH. Limnol Oceanogr 40:930–937

    Article  CAS  Google Scholar 

  27. Kopacek J, Ulrich KU, Hejzlar J, Borovec J, Stuchlik E (2001) Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies. Water Res 35:3783–3790

    Article  CAS  PubMed  Google Scholar 

  28. Kopacek J, Borovec J, Hejzlar J, Ulrich KU, Norton SA, Amirbahman A (2005) Aluminum control of phosphorus sorption by lake sediments. Environ Sci Technol 39:8784–8789

    Article  CAS  PubMed  Google Scholar 

  29. Kopacek J, Maresova M, Norton SA, Porcal P, Vesely J (2006) Photochemical source of metals for sediments. Environ Sci Technol 40:4455–4459

    Article  CAS  PubMed  Google Scholar 

  30. Kopacek J, Hejzlar J, Vrba J, Stuchlik E (2011) Phosphorus loading of mountain lakes: terrestrial export and atmospheric deposition. Limnol Oceanogr 56:1343–1354

    Article  CAS  Google Scholar 

  31. Kopacek J, Cosby BJ, Evans CD, Hruska J, Moldan F, Oulehle F, Santruckova H, Tahovska K, Wright RF (2013) Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry 115:33–51

    Article  CAS  Google Scholar 

  32. Landers DH, Simonich S, Jaffe D, Geiser L, Campbell DH, Schwindt A, Schreck C, Kent M, Hafner W, Taylor HE, Hageman K, Usenko S, Ackeman L, Schrlau J, Rose N, Blett T, Morrison Erway M (2008) Western airborne contaminants assessment project final report: volume I. The fate, transport, and ecological impacts of airborne contaminants in western National Parks (USA). United States Environmnetal Protection Agency. http://www.epa.gov/nheerl/wacap/

  33. Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  34. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Luckman B, Kavanagh T (2000) Impact of climate fluctuations on mountain environments in the Canadian Rockies. Ambio 29:371–380

    Google Scholar 

  36. Lukkari K, Hartikainen H, Leivuori M (2007) Fractionation of sediment phosphorus revisited. I: fractionation steps and their biogeochemical basis. Limnol Oceanogr Methods 5:433–444

    Article  CAS  Google Scholar 

  37. Melack JM, Stoddard JL (1991) Sierra Nevada, California. In: Charles DF (ed) Acidic deposition and aquatic ecosystems: regional case studies. Springer, New York, pp 503–530

    Chapter  Google Scholar 

  38. Monteith DT, Stoddard JL, Evans CD, De Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  CAS  PubMed  Google Scholar 

  39. Morales-Baquero R, Carrillo R, Reche I, Sanchez-Castillo P (1999) Nitrogen-phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Can J Fish Aquat Sci 56:1809–1817

    Article  CAS  Google Scholar 

  40. Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes. J Ecol 29:280–329

    Article  CAS  Google Scholar 

  41. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  42. Nürnberg GK (1985) Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Arch Hydrobiol 104:459–476

    Google Scholar 

  43. Parker BR, Vinebrooke RD, Schindler DW (2008) Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci USA 105:12927–12931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Pettersson K (2001) Phosphorus characteristics of settling and suspended particles in Lake Erken. Sci Total Environ 266:79–86

    Article  CAS  PubMed  Google Scholar 

  45. Prairie YT, De Montigny C, Del Giorgio PA (2001) Anaerobic phosphorus release from sediments: a paradigm revisited. Verh Int Verein Limnol 27:4013–4020

    CAS  Google Scholar 

  46. Psenner R (2003) Alpine lakes: extreme ecosystems under the pressures of global change. EAWAG News 55:12–14

    Google Scholar 

  47. Rydin E (2000) Potentially mobile phosphorus in Lake Erken sediment. Water Res 34:2037–2042

    Article  CAS  Google Scholar 

  48. Rydin E, Huster B, Welch EB (2000) Amount of phosphorus inactivated by alum treatments in Washington lakes. Limnol Oceanogr 45:226–230

    Article  CAS  Google Scholar 

  49. Rysgaard S, Risgaard-Petersen N, Sloth N, Jensen K, Nielsen L (1994) Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr 39:1643–1652

    Article  CAS  Google Scholar 

  50. Sadro S, Melack JM (2012) The effect of an extreme rain event on the biogeochemistry and ecosystem metabolism of an oligotrophic high-elevation lake. Arct Antarct Alp Res 44:222–231

    Google Scholar 

  51. Sadro S, Melack JM, Macintyre S (2011a) Depth-integrated estimates of ecosystem metabolism in a high-elevation lake (Emerald Lake, Sierra Nevada, California). Limnol Oceanogr 56:1764–1780

    Article  Google Scholar 

  52. Sadro S, Melack JM, Macintyre S (2011b) Spatial and temporal variability in the ecosystem metabolism of a high-elevation lake: integrating benthic and pelagic habitats. Ecosystems 14:1123–1140

    Article  CAS  Google Scholar 

  53. Sanclements MD, Fernandez IJ, Norton SA (2009) Soil and sediment phosphorus fractions in a forested watershed at Acadia National Park, ME, USA. For Ecol Manag 258:2318–2325

    Article  Google Scholar 

  54. Schindler DW, Kling H, Schmidt RV, Prokopowich J, Frost VE, Reid RA, Capel M (1973) Eutrophication of lake 227 by addition of phosphate and nitrage: the second, third, and fourth years of enrichment, 1970, 1971, and 1972. J Fish Res Board Can 30:1415–1440

    Article  CAS  Google Scholar 

  55. Shaw GD, Cisneros R, Schweizer D, Sickman JO, Fenn ME (2014) Critical loads of acid deposition for wilderness lakes in the Sierra Nevada (California) estimated by the steady state water chemistry model. Water Air Soil Pollut 225:1804

    Article  Google Scholar 

  56. Sickman JO (2001) Comparative analyses of nitrogen biogeochemistry in high-elevation ecosystems of the Sierra Nevada and Rocky Mountains. Ph.D. dissertation, University of California

  57. Sickman JO, Leydecker A, Chang CCY, Kendall C, Melack JM, Lucero DM, Schimel JP (2003a) Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry 64:1–32

    Article  CAS  Google Scholar 

  58. Sickman JO, Melack JM, Clow DW (2003b) Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol Oceanogr 48:1885–1892

    Article  CAS  Google Scholar 

  59. Sickman JO, Bennett DM, Lucero DM, Whitmore TJ, Kenney WF (2013) Diatom-interference models for acid-neutralizing capacity and nitrate based on 41 calibration lakes in the Sierra Nevada, California, USA. J Paleolimnol 50:159–174

    Article  Google Scholar 

  60. Smeck NE (1985) Phosphorus dynamics in soils and landscapes. Geoderma 36:185–199

    Article  CAS  Google Scholar 

  61. Sposito G (2008) The chemistry of soils, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  62. Tipping E (1981) The adsorption of aquatic humic substances by iron-oxides. Geochim Cosmochim Acta 45:191–199

    Article  CAS  Google Scholar 

  63. Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–122

    Article  CAS  Google Scholar 

  64. Vicars WC, Sickman JO, Ziemann PJ (2010) Atmospheric phosphorus deposition at a montane site: size distribution, effects of wildfire, and ecological implications. Atmos Environ 44:2813–2821

    Article  CAS  Google Scholar 

  65. Williams MR, Brown AD, Melack JM (1993) Geochemical and hydrologic controls on the composition of surface water in a high-elevation basin, Sierra Nevada, California. Limnol Oceanogr 38:775–797

    Article  CAS  Google Scholar 

  66. Wood SH (1977) Distribution, correlation, and cadiocarbon dating of late Holocene tephra, Mono and Inyo craters, eastern California. Geol Soc Am Bull 88:89–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Park Service and Annie Esperanza for facilitating access to the study sites and for other logistical support. We are indebted to Thomas Martin, Ahmed Haggag, Kevin Skeen, Delores Lucero, Woody Smith, Jennifer Quach, and Amanda James for help with field sampling and laboratory analyses and to Krystal Vasquez for artwork design. We are also grateful to two anonymous reviewers for their insightful comments and suggestions on the manuscript. This research was funded by the National Science Foundation (awards 0614207 and DBI-1202894 post-doctoral research award) and support from a Graduate Mentorship award and a Chancellor’s Fellowship at UC-Riverside.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter M. Homyak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 85 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homyak, P.M., Sickman, J.O. & Melack, J.M. Phosphorus in sediments of high-elevation lakes in the Sierra Nevada (California): implications for internal phosphorus loading. Aquat Sci 76, 511–525 (2014). https://doi.org/10.1007/s00027-014-0350-y

Download citation

Keywords

  • High-elevation lakes
  • Sequential P fractionation
  • Al:Fe ratios
  • Water chemistry