Skip to main content
Log in

Benthic respiration and stoichiometry of regenerated nutrients in lake sediments with Dreissena polymorpha

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The effect of patchy colonies of the invasive zebra mussel (Dreissena polymorpha) on sedimentary processes was investigated in a mesotrophic lake (Plateliai Lake, Lithuania). Benthic fluxes of O2, TCO2, CH4, Mn2+, Fe2+, N2, the inorganic forms of N, Si and P and dissolved organic C and N were quantified by dark incubations of sediments cores, with and without D. polymorpha. Individual mussels also were incubated for metabolic measurements. Sediments with D. polymorpha had significantly higher O2 and TCO2 fluxes and displayed higher rates of denitrification. The presence of mussels also resulted in higher regeneration of P and N (mostly as ammonium) while the effect on Si was not significant. However, likely due to the low zebra mussel biomass (57.2 ± 25.3 gSFDW m−2), biodeposition has not changed the ratio between anaerobic and total respiration. Methane and reduced metals fluxes were in fact similar in the presence and absence of D. polymorpha. Incubations of mussels without sediments confirmed that bivalve metabolism was the main driver of benthic respiration and nutrient recycling. Nitrate production suggested the presence of nitrifiers associated with the molluscs. The main outcome of this study was that zebra mussels alter the quantity and the stoichiometry of nutrients regenerated by the benthic compartment. The enhancement of nitrogen loss via denitrification, by a factor of 1.5, was much less pronounced than the increase in ammonium recycling rate, stimulated by a factor of 33. Negligible PO4 3− fluxes in bare sediments (−3.4 ± 6.8 μmol m−2 h−1) increased in the presence of mussels and considerable amounts of this nutrient (69.6 ± 29.4 μmol m−2 h−1) were mobilized to the water column. Further research should address other nutrient sources to the lake to verify whether altered rates and stoichiometry of benthic regeneration can affect primary producer community composition and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson LG, Hall POJ, Iverfeldt A, Van Der Loeff MMR, Sundby B, Westerlund SFG (1986) Benthic respiration measured by total carbonate production. Limnol Oceanogr 31:319–329

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (1975) In: standard methods for the examination of water and wastewaters, 14th edn. APHA, Washington

    Google Scholar 

  • Arnott LD, Vanni MJ (1996) Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Can J Aquat Sci 53:646–659

    Article  Google Scholar 

  • Bartoli M, Nizzoli D, Viaroli P, Turolla E, Castaldelli G, Fano AE, Rossi R (2001) Impact of Tapes philippinarum farming on nutrient dynamics and benthic respiration in the Sacca di Goro. Hydrobiologia 455:203–212

    Article  Google Scholar 

  • Bartoli M, Naldi M, Nizzoli D, Roubaix V, Viaroli P (2003) Influence of clam farming on macroalgal growth: a mesocosm experiment. Chem Ecol 19(2–3):147–160

    Article  CAS  Google Scholar 

  • Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170:229–244

    Article  Google Scholar 

  • Bruesewitz DA, Tank JL, Bernot MJ, Richardson WB, Strauss EA (2006) Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River. Can J Fish Aquat Sci 63:957–969

    Article  CAS  Google Scholar 

  • Bruesewitz DA, Tank JL, Bernot MJ (2008) Delineating the effects of zebra mussels (Dreissena polymorpha) on N transformation rates using laboratory mesocosms. J N AM Benthol Soc 27(2):236–251

    Article  Google Scholar 

  • Bruesewitz DA, Tank JL, Hamilton SK (2009) Seasonal effects of zebra mussels on littoral nitrogen transformation rates in Gull Lake, Michigan, USA. Freshwater Biol 54(7):1427–1443

    Article  CAS  Google Scholar 

  • Burlakova LE, Karatayev AY, Padilla DK (2005) Functional changes in benthic freshwater communities after Dreissena polymorpha (Pallas) invasion and consequences for filtration. The comparative role of suspension-feeders in ecosystems, NATO Science Series IV: Earth and Environmental Series: 263–275

  • Burnham KP, Anderson DR (2002) Model selection and inference: A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Bykova O, Laursen A, Bostan V, Bautista J, McCarthy L (2006) Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours microcystis growth? Sci Total Environ 371(1–3):362–372

    Article  CAS  PubMed  Google Scholar 

  • Caraco NF, Cole JJ, Raymond PA, Strayer DL, Pace ML, Findlay SEG, Fischer DT (1997) Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78:558–602

    Article  Google Scholar 

  • Caraco NF, Cole JJ, Findlay SEG, Lampman GG, Pace ML, Strayer DL (2000) Dissolved oxygen declines in the Hudson River associated with the invasion of the zebra mussel (Dreissena polymorha). Environ Sci Technol 34:1204–1210

    Article  CAS  Google Scholar 

  • Caraco NF, Cole JJ, Strayer DL (2006) Top-down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnol Oceanogr 51:664–670

    Article  Google Scholar 

  • Carignan R, Kalff J (1980) Phosphorus sources for aquatic weeds: water or sediments? Science 207:987–989

    Article  CAS  PubMed  Google Scholar 

  • Cha Y, Stow CA, Bernhardt ES (2012) Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshw Biol 58:192–206

    Article  Google Scholar 

  • Conroy JD, Culver DA (2005) Do dreissenid mussels affect Lake Erie ecosystem stability processes? Am Midl Nat 153(1):20–32

    Article  Google Scholar 

  • Cooley JM (1991) Editorial: zebra mussels. J Gt Lakes Res 17:1–2

    Article  Google Scholar 

  • Cope WG, Bartsch MR, Hayden RR (1997) Longitudinal patterns in abundance of the zebra mussel (Dreissena polymorpha) in the Upper Mississippi River. J Freshw Ecol 12:235–238

    Article  Google Scholar 

  • Davison W, Woof C, Rigg E (1982) The dynamics of iron and manganese in a seasonally anoxic lake; direct measurement of fluxes using sediment traps. Limnol Oceanogr 27:987–1003

    Article  CAS  Google Scholar 

  • De Stasio BT, Schrimpf MB, Beranek AE, Daniels WC (2008) Increased Chlorophyll a, phytoplankton abundance, and cyanobacteria occurrence following invasion of Green Bay, Lake Michigan by dreissenid mussels. Aq Inv 3:21–27

    Article  Google Scholar 

  • Dzialowski AR, Jessie W (2009) Zebra mussels negate or mask the positive effects of nutrient enrichment on algal biomass in experimental mesocosms: a preliminary mesocosm study. J Plankton Res 31:1407–1425

    Article  Google Scholar 

  • Effler SW, Siegfried CA (1994) Zebra mussel (Dreissena polymorpha) populations in the Seneca River, New York: impact on oxygen resources. Environ Sci Technol 28:2216–2221

    Article  CAS  PubMed  Google Scholar 

  • Forrest BM, Keeley NB, Hopkins GA, Webb SC, Clement DM (2009) Bivalve aquaculture in estuaries: review and synthesis of oyster cultivation effects. Aquaculture 298(1–2):1–15

    Article  Google Scholar 

  • Gardner WS, Cavaletto JF, Johengen TH, Johnson JR, Heath RT, Cotner JB (1995) Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron. J Great Lakes Res 21:529–544

    Article  CAS  Google Scholar 

  • Gardner WS, Yang L, Cotner JB, Johengen TH, Lavrentyev PJ (2001) Nitrogen dynamics in sandy freshwater sediments (Saginaw Bay, Lake Huron). J Great Lakes Res 27(1):84–97

    Article  CAS  Google Scholar 

  • Hargrave BT, Holmer M, Newcombe CP (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar Pollut Bull 56:810–824

    Article  CAS  PubMed  Google Scholar 

  • Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The near shore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293

    Article  CAS  Google Scholar 

  • James WF, Barko JW, Eakin HL (1997) Nutrients regeneration by the zebra mussel (Dreissena polymoprha). J Freshw Ecol 12(2):209–214

    Article  CAS  Google Scholar 

  • King GM (1990) Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol Lett 74(4):309–323

    CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb 54(6):1472–1480

    CAS  Google Scholar 

  • Matthews MA, McMahon RF (1999) Effects of temperature and temperature acclimation on survival of zebra mussels (Dreissena polymorpha) and asian clams (Corbicula fluminea) under extreme hypoxia. J Moll Stud 65:317–325

    Article  Google Scholar 

  • Mazerolle MJ (2013) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package vers 1:32

    Google Scholar 

  • Mazouni N, Gaertner JC, Deslous-Paoli JM, Landrein S, Geringer d’Oedenberg M (1996) Nutrient and oxygen exchanges at the water–sediment interface in a shellfish farming lagoon (Thau, France). J Exp Mar Biol Ecol 203:92–113

    Google Scholar 

  • McLaughlan C, Aldridge DC (2013) Cultivation of zebra mussels (Dreissena polymorpha) within their invaded range to improve water quality in reservoirs. Water Res 47(13):4357–4369

    Article  CAS  PubMed  Google Scholar 

  • Mellina E, Rasmussen JB, Mills EL (1995) Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can J Aquat Sci 52:2553–2573

    Article  CAS  Google Scholar 

  • Naddafi R, Pettersson K, Eklöv P (2007) The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshw Biol 52:823–842

    Article  Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Newell RIE, Cornwell JC, Owens MS (2002) Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: a laboratory study. Limnol Oceanogr 47(5):1367–1379

    Article  Google Scholar 

  • Newell RIE, Fisher TR, Holyoke RR, Cornwell JC (2005) Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake bay, USA. In: the comparative roles of suspension feeders in ecosystems, 47. NATO Science Series: IV: Earth and Environ Sci: 93-120

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope paring. FEMS Microbiol Ecol 86:357–362

    Article  CAS  Google Scholar 

  • Nizzoli D, Welsh DT, Fano EA, Viaroli P (2006) Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. Mar Ecol Prog Ser 315:151–165

    Article  CAS  Google Scholar 

  • Nizzoli D, Bartoli M, Viaroli P (2007) Oxygen and ammonium dynamics during a farming cycle of the bivalve Tapes philippinarum. Hydrobiologia 587:25–36

    Article  CAS  Google Scholar 

  • Ozersky T, Evans DO, Barton DR (2012) Invasive mussels alter the littoral food web of a large lake: stable isotopes reveal drastic shifts in sources and flow of energy. PLoS One 7(12):e51249. doi:10.1371/journal.pone.0051249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papaspyrou S, Thessalou-Legaki M, Kristensen E (2010) The influence of infaunal (Nereis diversicolor) abundance on degradation of organic matter in sandy sediments. J Exp Mar Biol Ecol 393:148–157

    Article  Google Scholar 

  • Pelegrí SP, Blackburn TH (1995) Effect of bioturbation by Nereis sp., Mya Arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments. Ophelia 42(1):289–299

    Article  Google Scholar 

  • Petersen JK, Timmermann K, Carlsson M, Holmer M, Maar M, Lindahl O (2012) Mussel farming can be used as mitigation tool—a reply. Mar Pollut Bull 64:452–454

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team (2013). nlme: Linear and nonlinear mixed effects models. R package version 3.1–109

  • Qualls TM, Dolan DM, Reed T, Zorn ME, Kennedy J (2007) Analysis of the impacts of the zebra mussel, Dreissena polymorpha, on nutrients, water clarity, and the chlorophyll–phosphorus relationship in lower Green Bay. J Great Lakes Res 33:617–626

    Article  CAS  Google Scholar 

  • Racchetti E, Bartoli M, Soana E, Longhi D, Christian RR, Pinardi M, Viaroli P (2011) Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry 103:335–354

    Article  CAS  Google Scholar 

  • Richards FA (1965) Anoxic basins and fjords. In: Ryley JP, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 611–645

    Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman and Hall, London, p 357

    Google Scholar 

  • Scheffer M, Szabo S, Gragnani A, van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijackers RMM, Franken RJM (2003) Floating plant dominance as a stable state. Proc Natl Acad Sci USA 100:4040–4045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schernewski G, Stybel N, Neumann T (2012) Zebra mussel farming in the Szczecin (Oder) Lagoon: water-quality objectives and cost-effectiveness. Ecol Soc 17(2):4. doi:10.5751/ES-04644-170204

    Google Scholar 

  • Seitzinger SP (1994) Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 25:19–39

    Article  CAS  Google Scholar 

  • Stadmark J, Conley DJ (2011) Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Mar Pollut Bull 62:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Stadmark J, Conley D et al (2012) Response to Rose and Petersen et al. Mar Pollut Bull 64(2):455–456

    Article  CAS  Google Scholar 

  • Stańczykowska A, Lewandowski K (1993) Effect of filtering activity of Dreissena polymorpha (Pall.) on the nutrient budget of the littoral of Lake Mikołajskie. Hydrobiologia 251:73–79

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological Stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Strayer DL, Cid N, Malcom HM (2011) Long-term changes in a population of an invasive bivalve and its effects. Oecologia 165:1063–1072

    Article  PubMed  Google Scholar 

  • Svenningsen NB, Heisterkamp IM, Sigby-Clausen M, Larsen LH, Nielsen LP, Stief P, Schramm A (2012) Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (Zebra Mussel). Appl Environ Microbiol 78(12):4505–4509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  • Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221

    Article  CAS  Google Scholar 

  • Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370

    Article  Google Scholar 

  • Viaroli P, Bartoli M, Giordani G, Naldi M, Orfanidis S, Zaldívar JM (2008) Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conserv 18:105–125

    Article  Google Scholar 

  • Zaiko A, Paškauskas R, Krevš A (2010) Biogeochemical alteration of the benthic environment by the zebra mussel Dreissena polymorpha (Pallas). Oceanologia 52:649–667

    Article  Google Scholar 

  • Zhang H, Culver DA, Boegman L (2011) Dreissenids in Lake Erie: an algal filter or a fertilizer? Aq Inv 6(2):175–194

    Article  Google Scholar 

  • Zhu B, Fitzgerald DG, Mayer CM, Rudstam LG, Mills EL (2006) Alteration of ecosystem function by zebra mussel on Oneida Lake: impact on submerged macrophytes. Ecosystems 9:1017–1028

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The research and preparation of the paper was supported by the Research Council of Lithuania, Dreissena project, No. LEK-12023. We thank two anonymous reviewers and Prof. Paul Bukaveckas for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bartoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruginis, T., Bartoli, M., Petkuviene, J. et al. Benthic respiration and stoichiometry of regenerated nutrients in lake sediments with Dreissena polymorpha . Aquat Sci 76, 405–417 (2014). https://doi.org/10.1007/s00027-014-0343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0343-x

Keywords

Navigation