Aquatic Sciences

, Volume 76, Issue 3, pp 405–417 | Cite as

Benthic respiration and stoichiometry of regenerated nutrients in lake sediments with Dreissena polymorpha

  • Tomas Ruginis
  • Marco Bartoli
  • Jolita Petkuviene
  • Mindaugas Zilius
  • Irma Lubiene
  • Alex Laini
  • Arturas Razinkovas-Baziukas
Research Article


The effect of patchy colonies of the invasive zebra mussel (Dreissena polymorpha) on sedimentary processes was investigated in a mesotrophic lake (Plateliai Lake, Lithuania). Benthic fluxes of O2, TCO2, CH4, Mn2+, Fe2+, N2, the inorganic forms of N, Si and P and dissolved organic C and N were quantified by dark incubations of sediments cores, with and without D. polymorpha. Individual mussels also were incubated for metabolic measurements. Sediments with D. polymorpha had significantly higher O2 and TCO2 fluxes and displayed higher rates of denitrification. The presence of mussels also resulted in higher regeneration of P and N (mostly as ammonium) while the effect on Si was not significant. However, likely due to the low zebra mussel biomass (57.2 ± 25.3 gSFDW m−2), biodeposition has not changed the ratio between anaerobic and total respiration. Methane and reduced metals fluxes were in fact similar in the presence and absence of D. polymorpha. Incubations of mussels without sediments confirmed that bivalve metabolism was the main driver of benthic respiration and nutrient recycling. Nitrate production suggested the presence of nitrifiers associated with the molluscs. The main outcome of this study was that zebra mussels alter the quantity and the stoichiometry of nutrients regenerated by the benthic compartment. The enhancement of nitrogen loss via denitrification, by a factor of 1.5, was much less pronounced than the increase in ammonium recycling rate, stimulated by a factor of 33. Negligible PO4 3− fluxes in bare sediments (−3.4 ± 6.8 μmol m−2 h−1) increased in the presence of mussels and considerable amounts of this nutrient (69.6 ± 29.4 μmol m−2 h−1) were mobilized to the water column. Further research should address other nutrient sources to the lake to verify whether altered rates and stoichiometry of benthic regeneration can affect primary producer community composition and activity.


Dreissena polymorpha Sediments Aerobic respiration Denitrification Nutrients Recycling Stoichiometry 



The research and preparation of the paper was supported by the Research Council of Lithuania, Dreissena project, No. LEK-12023. We thank two anonymous reviewers and Prof. Paul Bukaveckas for valuable comments on an earlier version of the manuscript.


  1. Anderson LG, Hall POJ, Iverfeldt A, Van Der Loeff MMR, Sundby B, Westerlund SFG (1986) Benthic respiration measured by total carbonate production. Limnol Oceanogr 31:319–329CrossRefGoogle Scholar
  2. APHA (American Public Health Association) (1975) In: standard methods for the examination of water and wastewaters, 14th edn. APHA, WashingtonGoogle Scholar
  3. Arnott LD, Vanni MJ (1996) Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Can J Aquat Sci 53:646–659CrossRefGoogle Scholar
  4. Bartoli M, Nizzoli D, Viaroli P, Turolla E, Castaldelli G, Fano AE, Rossi R (2001) Impact of Tapes philippinarum farming on nutrient dynamics and benthic respiration in the Sacca di Goro. Hydrobiologia 455:203–212CrossRefGoogle Scholar
  5. Bartoli M, Naldi M, Nizzoli D, Roubaix V, Viaroli P (2003) Influence of clam farming on macroalgal growth: a mesocosm experiment. Chem Ecol 19(2–3):147–160CrossRefGoogle Scholar
  6. Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170:229–244CrossRefGoogle Scholar
  7. Bruesewitz DA, Tank JL, Bernot MJ, Richardson WB, Strauss EA (2006) Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River. Can J Fish Aquat Sci 63:957–969CrossRefGoogle Scholar
  8. Bruesewitz DA, Tank JL, Bernot MJ (2008) Delineating the effects of zebra mussels (Dreissena polymorpha) on N transformation rates using laboratory mesocosms. J N AM Benthol Soc 27(2):236–251CrossRefGoogle Scholar
  9. Bruesewitz DA, Tank JL, Hamilton SK (2009) Seasonal effects of zebra mussels on littoral nitrogen transformation rates in Gull Lake, Michigan, USA. Freshwater Biol 54(7):1427–1443CrossRefGoogle Scholar
  10. Burlakova LE, Karatayev AY, Padilla DK (2005) Functional changes in benthic freshwater communities after Dreissena polymorpha (Pallas) invasion and consequences for filtration. The comparative role of suspension-feeders in ecosystems, NATO Science Series IV: Earth and Environmental Series: 263–275Google Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and inference: A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  12. Bykova O, Laursen A, Bostan V, Bautista J, McCarthy L (2006) Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours microcystis growth? Sci Total Environ 371(1–3):362–372PubMedCrossRefGoogle Scholar
  13. Caraco NF, Cole JJ, Raymond PA, Strayer DL, Pace ML, Findlay SEG, Fischer DT (1997) Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78:558–602CrossRefGoogle Scholar
  14. Caraco NF, Cole JJ, Findlay SEG, Lampman GG, Pace ML, Strayer DL (2000) Dissolved oxygen declines in the Hudson River associated with the invasion of the zebra mussel (Dreissena polymorha). Environ Sci Technol 34:1204–1210CrossRefGoogle Scholar
  15. Caraco NF, Cole JJ, Strayer DL (2006) Top-down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnol Oceanogr 51:664–670CrossRefGoogle Scholar
  16. Carignan R, Kalff J (1980) Phosphorus sources for aquatic weeds: water or sediments? Science 207:987–989PubMedCrossRefGoogle Scholar
  17. Cha Y, Stow CA, Bernhardt ES (2012) Impacts of dreissenid mussel invasions on chlorophyll and total phosphorus in 25 lakes in the USA. Freshw Biol 58:192–206CrossRefGoogle Scholar
  18. Conroy JD, Culver DA (2005) Do dreissenid mussels affect Lake Erie ecosystem stability processes? Am Midl Nat 153(1):20–32CrossRefGoogle Scholar
  19. Cooley JM (1991) Editorial: zebra mussels. J Gt Lakes Res 17:1–2CrossRefGoogle Scholar
  20. Cope WG, Bartsch MR, Hayden RR (1997) Longitudinal patterns in abundance of the zebra mussel (Dreissena polymorpha) in the Upper Mississippi River. J Freshw Ecol 12:235–238CrossRefGoogle Scholar
  21. Davison W, Woof C, Rigg E (1982) The dynamics of iron and manganese in a seasonally anoxic lake; direct measurement of fluxes using sediment traps. Limnol Oceanogr 27:987–1003CrossRefGoogle Scholar
  22. De Stasio BT, Schrimpf MB, Beranek AE, Daniels WC (2008) Increased Chlorophyll a, phytoplankton abundance, and cyanobacteria occurrence following invasion of Green Bay, Lake Michigan by dreissenid mussels. Aq Inv 3:21–27CrossRefGoogle Scholar
  23. Dzialowski AR, Jessie W (2009) Zebra mussels negate or mask the positive effects of nutrient enrichment on algal biomass in experimental mesocosms: a preliminary mesocosm study. J Plankton Res 31:1407–1425CrossRefGoogle Scholar
  24. Effler SW, Siegfried CA (1994) Zebra mussel (Dreissena polymorpha) populations in the Seneca River, New York: impact on oxygen resources. Environ Sci Technol 28:2216–2221PubMedCrossRefGoogle Scholar
  25. Forrest BM, Keeley NB, Hopkins GA, Webb SC, Clement DM (2009) Bivalve aquaculture in estuaries: review and synthesis of oyster cultivation effects. Aquaculture 298(1–2):1–15CrossRefGoogle Scholar
  26. Gardner WS, Cavaletto JF, Johengen TH, Johnson JR, Heath RT, Cotner JB (1995) Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron. J Great Lakes Res 21:529–544CrossRefGoogle Scholar
  27. Gardner WS, Yang L, Cotner JB, Johengen TH, Lavrentyev PJ (2001) Nitrogen dynamics in sandy freshwater sediments (Saginaw Bay, Lake Huron). J Great Lakes Res 27(1):84–97CrossRefGoogle Scholar
  28. Hargrave BT, Holmer M, Newcombe CP (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar Pollut Bull 56:810–824PubMedCrossRefGoogle Scholar
  29. Hecky RE, Smith REH, Barton DR, Guildford SJ, Taylor WD, Charlton MN, Howell T (2004) The near shore phosphorus shunt: a consequence of ecosystem engineering by dreissenids in the Laurentian Great Lakes. Can J Fish Aquat Sci 61:1285–1293CrossRefGoogle Scholar
  30. James WF, Barko JW, Eakin HL (1997) Nutrients regeneration by the zebra mussel (Dreissena polymoprha). J Freshw Ecol 12(2):209–214CrossRefGoogle Scholar
  31. King GM (1990) Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol Lett 74(4):309–323Google Scholar
  32. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  33. Lovley DR, Phillips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb 54(6):1472–1480Google Scholar
  34. Matthews MA, McMahon RF (1999) Effects of temperature and temperature acclimation on survival of zebra mussels (Dreissena polymorpha) and asian clams (Corbicula fluminea) under extreme hypoxia. J Moll Stud 65:317–325CrossRefGoogle Scholar
  35. Mazerolle MJ (2013) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package vers 1:32Google Scholar
  36. Mazouni N, Gaertner JC, Deslous-Paoli JM, Landrein S, Geringer d’Oedenberg M (1996) Nutrient and oxygen exchanges at the water–sediment interface in a shellfish farming lagoon (Thau, France). J Exp Mar Biol Ecol 203:92–113Google Scholar
  37. McLaughlan C, Aldridge DC (2013) Cultivation of zebra mussels (Dreissena polymorpha) within their invaded range to improve water quality in reservoirs. Water Res 47(13):4357–4369PubMedCrossRefGoogle Scholar
  38. Mellina E, Rasmussen JB, Mills EL (1995) Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can J Aquat Sci 52:2553–2573CrossRefGoogle Scholar
  39. Naddafi R, Pettersson K, Eklöv P (2007) The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshw Biol 52:823–842CrossRefGoogle Scholar
  40. Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61Google Scholar
  41. Newell RIE, Cornwell JC, Owens MS (2002) Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: a laboratory study. Limnol Oceanogr 47(5):1367–1379CrossRefGoogle Scholar
  42. Newell RIE, Fisher TR, Holyoke RR, Cornwell JC (2005) Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake bay, USA. In: the comparative roles of suspension feeders in ecosystems, 47. NATO Science Series: IV: Earth and Environ Sci: 93-120Google Scholar
  43. Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope paring. FEMS Microbiol Ecol 86:357–362CrossRefGoogle Scholar
  44. Nizzoli D, Welsh DT, Fano EA, Viaroli P (2006) Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. Mar Ecol Prog Ser 315:151–165CrossRefGoogle Scholar
  45. Nizzoli D, Bartoli M, Viaroli P (2007) Oxygen and ammonium dynamics during a farming cycle of the bivalve Tapes philippinarum. Hydrobiologia 587:25–36CrossRefGoogle Scholar
  46. Ozersky T, Evans DO, Barton DR (2012) Invasive mussels alter the littoral food web of a large lake: stable isotopes reveal drastic shifts in sources and flow of energy. PLoS One 7(12):e51249. doi: 10.1371/journal.pone.0051249 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Papaspyrou S, Thessalou-Legaki M, Kristensen E (2010) The influence of infaunal (Nereis diversicolor) abundance on degradation of organic matter in sandy sediments. J Exp Mar Biol Ecol 393:148–157CrossRefGoogle Scholar
  48. Pelegrí SP, Blackburn TH (1995) Effect of bioturbation by Nereis sp., Mya Arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments. Ophelia 42(1):289–299CrossRefGoogle Scholar
  49. Petersen JK, Timmermann K, Carlsson M, Holmer M, Maar M, Lindahl O (2012) Mussel farming can be used as mitigation tool—a reply. Mar Pollut Bull 64:452–454PubMedCrossRefGoogle Scholar
  50. Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team (2013). nlme: Linear and nonlinear mixed effects models. R package version 3.1–109Google Scholar
  51. Qualls TM, Dolan DM, Reed T, Zorn ME, Kennedy J (2007) Analysis of the impacts of the zebra mussel, Dreissena polymorpha, on nutrients, water clarity, and the chlorophyll–phosphorus relationship in lower Green Bay. J Great Lakes Res 33:617–626CrossRefGoogle Scholar
  52. Racchetti E, Bartoli M, Soana E, Longhi D, Christian RR, Pinardi M, Viaroli P (2011) Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification. Biogeochemistry 103:335–354CrossRefGoogle Scholar
  53. Richards FA (1965) Anoxic basins and fjords. In: Ryley JP, Skirrow G (eds) Chemical oceanography. Academic Press, London, pp 611–645Google Scholar
  54. Scheffer M (1998) Ecology of shallow lakes. Chapman and Hall, London, p 357Google Scholar
  55. Scheffer M, Szabo S, Gragnani A, van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijackers RMM, Franken RJM (2003) Floating plant dominance as a stable state. Proc Natl Acad Sci USA 100:4040–4045PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schernewski G, Stybel N, Neumann T (2012) Zebra mussel farming in the Szczecin (Oder) Lagoon: water-quality objectives and cost-effectiveness. Ecol Soc 17(2):4. doi: 10.5751/ES-04644-170204 Google Scholar
  57. Seitzinger SP (1994) Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 25:19–39CrossRefGoogle Scholar
  58. Stadmark J, Conley DJ (2011) Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Mar Pollut Bull 62:1385–1388PubMedCrossRefGoogle Scholar
  59. Stadmark J, Conley D et al (2012) Response to Rose and Petersen et al. Mar Pollut Bull 64(2):455–456CrossRefGoogle Scholar
  60. Stańczykowska A, Lewandowski K (1993) Effect of filtering activity of Dreissena polymorpha (Pall.) on the nutrient budget of the littoral of Lake Mikołajskie. Hydrobiologia 251:73–79CrossRefGoogle Scholar
  61. Sterner RW, Elser JJ (2002) Ecological Stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  62. Strayer DL, Cid N, Malcom HM (2011) Long-term changes in a population of an invasive bivalve and its effects. Oecologia 165:1063–1072PubMedCrossRefGoogle Scholar
  63. Svenningsen NB, Heisterkamp IM, Sigby-Clausen M, Larsen LH, Nielsen LP, Stief P, Schramm A (2012) Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (Zebra Mussel). Appl Environ Microbiol 78(12):4505–4509PubMedCentralPubMedCrossRefGoogle Scholar
  64. R Core Team (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0,
  65. Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221CrossRefGoogle Scholar
  66. Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370CrossRefGoogle Scholar
  67. Viaroli P, Bartoli M, Giordani G, Naldi M, Orfanidis S, Zaldívar JM (2008) Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conserv 18:105–125CrossRefGoogle Scholar
  68. Zaiko A, Paškauskas R, Krevš A (2010) Biogeochemical alteration of the benthic environment by the zebra mussel Dreissena polymorpha (Pallas). Oceanologia 52:649–667CrossRefGoogle Scholar
  69. Zhang H, Culver DA, Boegman L (2011) Dreissenids in Lake Erie: an algal filter or a fertilizer? Aq Inv 6(2):175–194CrossRefGoogle Scholar
  70. Zhu B, Fitzgerald DG, Mayer CM, Rudstam LG, Mills EL (2006) Alteration of ecosystem function by zebra mussel on Oneida Lake: impact on submerged macrophytes. Ecosystems 9:1017–1028CrossRefGoogle Scholar
  71. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Tomas Ruginis
    • 1
  • Marco Bartoli
    • 2
  • Jolita Petkuviene
    • 1
  • Mindaugas Zilius
    • 1
  • Irma Lubiene
    • 1
  • Alex Laini
    • 2
  • Arturas Razinkovas-Baziukas
    • 1
  1. 1.Coastal Research and Planning InstituteUniversity of KlaipedaKlaipedaLithuania
  2. 2.Department of Life SciencesUniversity of ParmaParmaItaly

Personalised recommendations