Aquatic Sciences

, Volume 76, Supplement 1, pp 33–46 | Cite as

Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria

  • Loïc Sauvain
  • Matthieu Bueche
  • Thomas Junier
  • Matthieu Masson
  • Tina Wunderlin
  • Roxane Kohler-Milleret
  • Elena Gascon Diez
  • Jean-Luc Loizeau
  • Mary-Lou Tercier-Waeber
  • Pilar JunierEmail author
Research Article - Based on MIR Investigations in Lake Geneva


Lake sediments in areas close to the outlet of wastewater treatment plants are sinks for pollutants. Bacterial communities in sediments are likely affected by the released effluents, but in turn they might modify the distribution and bioavailability of pollutants. On the shore of Lake Geneva, Switzerland, wastewater from the City of Lausanne is treated and discharged into the lake via an outlet pipe in the Vidy Bay. The objectives of this study were to assess (1) the impact of the treated wastewater release on the bacterial communities in the Vidy Bay sediments and (2) the potential link between bacterial communities and trace metal sediment content. Bacterial community composition and abundance were assessed in sediments collected in three areas with different levels of contamination. The main factors affecting bacterial communities were inferred by linking biological data with chemical analyses on these sediments. Near to the outlet pipe, large quantities of bacterial cells were detected in the three upper most cm (3.2 × 109 cells assessed by microscopy and 1.7 × 1010 copies of the 16S rRNA gene assessed by quantitative PCR, per gram of wet sediment), and the dominant bacterial groups were those typically found in activated sludge (e.g. Acidovorax defluivii and Hydrogenophaga caeni). Three samples in an area further away from the outlet and one sample close to it were characterized by 50 % of endospore-forming Firmicutes (Clostridium spp.) and a clear enrichment in trace metal content. These results highlight the potential role of endospore-forming Firmicutes on transport and deposition of trace metals in sediments.


Sediments Bacterial communities Firmicutes Trace metals High-throughput DNA sequencing Lake Geneva 



This publication is part of the international, interdisciplinary research project ELEMO ( to investigate the deep-waters of Lake Geneva using two Russian MIR submarines. Funding for this study was provided by the Fondation pour l’Etude des Eaux du Léman (FEEL). Additional funding for the work described in this paper was provided by the Swiss National Science Foundation (Grant 31003A_132358). We are grateful for the support. We thank the Russian MIR crew members ( for their excellent performance and the SAGRAVE team who provided and operated the platform from which the dives were carried out. We also thank Ulrich Lemmin and Jean-Denis Bourquin for project coordination. The service of Mikhail Kranoperov (Russian Honorary Consulate) as liaison is greatly appreciated. Special thanks to Jean-Claude Lavanchy from the Centre of Mineral Analysis (CAM), University of Lausanne, for helping with elemental analysis, and Radu Slobodeanu, from the University of Neuchâtel, for helping on statistical analysis. The authors thank two anonymous reviewers for the valuable comments to improve this manuscript.

Supplementary material

27_2013_313_MOESM1_ESM.doc (379 kb)
Supplementary material 1 (DOC 379 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedCrossRefGoogle Scholar
  2. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69(10):5884–5891PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bakke I, De Schryver P, Boon N, Vadstein O (2011) PCR-based community structure studies of Bacteria associated with eukaryotic organisms: a simple PCR strategy to avoid co-amplification of eukaryotic DNA. J Microbiol Methods 84(2):349–351PubMedCrossRefGoogle Scholar
  4. Batten KM, Scow KM (2003) Sediment microbial community composition and methylmercury pollution at four mercury mine-impacted sites. Microb Ecol 46(4):429–441PubMedCrossRefGoogle Scholar
  5. Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochem Environ Important Trace Elem 835:262–297CrossRefGoogle Scholar
  6. Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, Nybroe O (2012) Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl Environ Microbiol 78(20):7438–7446PubMedCentralPubMedCrossRefGoogle Scholar
  7. Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8(5):1003–1034CrossRefGoogle Scholar
  8. Blanck H, Wangberg SA, Molander S (1988) Pollution-induced community tolerance—a new ecotoxicological tool. In: Cairns J, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals, ASTM STP 988. American Society for Testing and Materials, Philadelphia, pp 219–230CrossRefGoogle Scholar
  9. Bravo AG, Bouchet S, Amouroux D, Pote J, Dominik J (2011) Distribution of mercury and organic matter in particle-size classes in sediments contaminated by a waste water treatment plant: Vidy Bay, Lake Geneva, Switzerland. J Environ Monit 13(4):974–982PubMedCrossRefGoogle Scholar
  10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336PubMedCentralPubMedCrossRefGoogle Scholar
  11. CCME (1999) Canadian sediment quality guidelines for the protection of aquatic life. Reprinted in Canadian environmental quality guidelines, Chapter 6. Canadian Council of Ministers of the Environment, Winnipeg.Google Scholar
  12. Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain AK, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67(7):3149–3160PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:1126–1130PubMedCrossRefGoogle Scholar
  14. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345(1311):101–118PubMedCrossRefGoogle Scholar
  15. Daims H, Lucker S, Wagner M (2006) daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8(2):200–213PubMedCrossRefGoogle Scholar
  16. Dineen SM, Aranda R, Anders DL, Robertson JM (2010) An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. J Appl Microbiol 109(6):1886–1896PubMedCrossRefGoogle Scholar
  17. Dorioz JM, Pelletier JP, Benoit P (1998) Physico-chemical properties and bioavailability of particulate phosphorus of various origin in a watershed of Lake Geneva (France). Water Res 32(2):275–286CrossRefGoogle Scholar
  18. Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1(2):117–126PubMedCrossRefGoogle Scholar
  19. Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62(2):340–346PubMedCentralPubMedGoogle Scholar
  20. Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment, 2nd rev. edn. Springer-Verlag, New York, Heidelberg, BerlinCrossRefGoogle Scholar
  21. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64(9):3336–3345PubMedCentralPubMedGoogle Scholar
  22. Gascon Diez E, Bravo AG, a Porta N, Masson M, Graham ND, Stoll S, Akhtman Y, Amouroux D, Loizeau JL (2013) Mercury content and speciation related to sediment surface patterns in contaminated Vidy Bay, Lake Geneva, Switzerland. Aquat Sci (this issue)Google Scholar
  23. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414CrossRefGoogle Scholar
  24. Gough HL, Stahl DA (2011) Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. ISME J 5(3):543–558PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hagen KD, Nelson DC (1997) Use of reduced sulfur compounds by Beggiatoa spp.: enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures. Appl Environ Microbiol 63(10):3957–3964PubMedCentralPubMedGoogle Scholar
  26. Haller L, Tonolla M, Zopfi J, Peduzzi R, Wildi W, Pote J (2011) Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Res 45(3):1213–1228PubMedCrossRefGoogle Scholar
  27. Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65(6):1853–1856CrossRefGoogle Scholar
  28. Hines ME, Horvat M, Faganeli J, Bonzongo JC, Barkay T, Major EB, Scott KJ, Bailey EA, Warwick JJ, Lyons WB (2000) Mercury biogeochemistry in the Idrija river, Slovenia, from above the mine into the Gulf of Trieste. Environ Res 83(2):129–139PubMedCrossRefGoogle Scholar
  29. Horn N (1987) Clostridium disporicum sp-nov, a saccharolytic species able to form 2 spores per cell, isolated from a rat cecum. Int J Syst Bacteriol 37(4):398–401CrossRefGoogle Scholar
  30. Hu M, Wang X, Wen X, Xia Y (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol 117:72–79PubMedCrossRefGoogle Scholar
  31. Huerta-Diaz MA, Delgadillo-Hinojosa F, Siqueiros-Valencia A, Valdivieso-Ojeda J, Reimer JJ, Segovia-Zavala JA (2012) Millimeter-scale resolution of trace metal distributions in microbial mats from a hypersaline environment in Baja California, Mexico. Geobiology 10(6):531–547PubMedCrossRefGoogle Scholar
  32. ICPR (2009) Sediment management plan Rhine: summary. Report No. 175, International Commission for the Protection of the Rhine (ICPR), KoblenzGoogle Scholar
  33. Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23(3):299–306CrossRefGoogle Scholar
  34. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921PubMedCentralPubMedCrossRefGoogle Scholar
  35. Kobayashi Y, Itoh A, Miyawaki K, Koike S, Iwabuchi O, Iimura Y, Kobashi Y, Kawashima T, Wakamatsu J, Hattori A, Murakami H, Morimatsu F, Nakaebisu T, Hishinuma T (2011) Effect of liquid whey feeding on fecal microbiota of mature and growing pigs. Anim Sci J 82(4):607–615PubMedCrossRefGoogle Scholar
  36. Li H, Zhang Y, Li DS, Xu H, Chen GX, Zhang CG (2009) Comparisons of different hypervariable regions of rrs genes for fingerprinting of microbial communities in paddy soils. Soil Biol Biochem 41(5):954–968CrossRefGoogle Scholar
  37. Loizeau J-L, Rozé S, Peytremann C, Monna F, Dominik J (2003) Mapping sediment accumulation rate by using volume magnetic susceptibility core correlation in a contaminated bay (Lake Geneva, Switzerland). Eclogae Geol Helv 96(Supplement 1):S73–S79Google Scholar
  38. Loizeau J-L, Pardos M, Monna F, Peytremann C, Haller L, Dominik J (2004) The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland–France). Part 2: temporal evolution of heavy metals. Lakes Reserv: Res Manag 9:53–63CrossRefGoogle Scholar
  39. Mangin I, Bonnet R, Seksik P, Rigottier-Gois L, Sutren M, Bouhnik Y, Neut C, Collins MD, Colombel JF, Marteau P, Dore J (2004) Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol Ecol 50(1):25–36PubMedCrossRefGoogle Scholar
  40. Masson M, Tercier-Waeber ML (2013) Trace metal speciation at the sediment-water interface of the Vidy Bay: influence of contrasting sediment characteristics. Aquat Sci (this issue)Google Scholar
  41. McGarvey JA, Miller WG, Sanchez S, Stanker L (2004) Identification of bacterial populations in dairy wastewaters by use of 16S rRNA gene sequences and other genetic markers. Appl Environ Microbiol 70(7):4267–4275PubMedCentralPubMedCrossRefGoogle Scholar
  42. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27(1):31–36CrossRefGoogle Scholar
  43. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 s rRNA. Appl Environ Microbiol 59(3):695–700PubMedCentralPubMedGoogle Scholar
  44. Nakagawa T, Hanada S, Maruyama A, Marumo K, Urabe T, Fukui M (2002) Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan). FEMS Microbiol Ecol 41(3):199–209PubMedCrossRefGoogle Scholar
  45. Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Earth Planet Sci 25:403–434PubMedCrossRefGoogle Scholar
  46. Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp nov and Geobacter psychrophilus sp nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674PubMedCrossRefGoogle Scholar
  47. Ogilvie LA, Grant A (2008) Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments. Mar Environ Res 65(2):187–198PubMedCrossRefGoogle Scholar
  48. Pardos M, Benninghoff C, Alencastro LP, Wildi W (2004) The impact of a sewage treatment plant’s effluent on sediment quality in a small bay in Lake Geneva (Switzerland–France). Part 1: spatial distribution of contaminants and the potential for biological impacts. Lakes Reserv: Res Manage 9:41–52CrossRefGoogle Scholar
  49. Poté J, Haller L, Loizeau J-L, Garcia Bravo A, Sastre V, Wildi W (2008) Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Bioresour Technol 99(15):7122–7131PubMedCrossRefGoogle Scholar
  50. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62(2):142–160PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sánchez-Andrea I, Knittel K, Amann R, Amils R, Sanz JL (2012) Quantification of Tinto river sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl Environ Microbiol 78(13):4638–4645PubMedCentralPubMedCrossRefGoogle Scholar
  52. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506PubMedCentralPubMedCrossRefGoogle Scholar
  53. Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer KH, Kampfer P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp nov. Syst Appl Microbiol 22(2):205–214PubMedCrossRefGoogle Scholar
  54. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077PubMedCrossRefGoogle Scholar
  55. Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63CrossRefGoogle Scholar
  56. SESA (2012) Bilans 2011 de l’épuration vaudoise. Service des eaux, sols et assainissementGoogle Scholar
  57. Shipp WG, Zierenberg RA (2008) Pathways of acid mine drainage to Clear Lake: implications for mercury cycling. Ecol Appl 18(8 Suppl):A29–A54PubMedCrossRefGoogle Scholar
  58. Song YL, Liu CX, McTeague M, Summanen P, Finegold SM (2004) Clostridium bartlettii sp nov., isolated from human faeces. Anaerobe 10(3):179–184PubMedCrossRefGoogle Scholar
  59. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44(4):846–849Google Scholar
  60. Tercier-Waeber M-L, Stoll S, Slaveykova VI (2012) Trace metal behavior in surface waters: emphasis on dynamic speciation, sorption processes and bioavailability. Arch Sci 65:119–142Google Scholar
  61. Thevenon F, Graham ND, Chiaradia M, Arpagaus P, Wildi W, Pote J (2011a) Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Sci Total Environ 412:239–247PubMedCrossRefGoogle Scholar
  62. Thevenon F, Graham ND, Herbez A, Wildi W, Pote J (2011b) Spatio-temporal distribution of organic and inorganic pollutants from Lake Geneva (Switzerland) reveals strong interacting effects of sewage treatment plant and eutrophication on microbial abundance. Chemosphere 84(5):609–617PubMedCrossRefGoogle Scholar
  63. Weinbauer MG, Beckmann C, Hofle MG (1998) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl Environ Microbiol 64(12):5000–5003PubMedCentralPubMedGoogle Scholar
  64. Wildi W, Dominik J, Loizeau JL, Thomas RL, Favarger P-Y, Haller L, Perroud A, Peytremann C (2004) River, reservoir and lake sediment contamination by heavy metals downstream from urban areas of Switzerland. Lakes Reserv: Res Manag 9:75–87CrossRefGoogle Scholar
  65. Xia S, Duan L, Song Y, Li J, Piceno YM, Andersen GL, Alvarez-Cohen L, Moreno-Andrade I, Huang CL, Hermanowicz SW (2010) Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ Sci Technol 44(19):7391–7396PubMedCrossRefGoogle Scholar
  66. Yu R-Q, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46(5):2684–2691PubMedCrossRefGoogle Scholar
  67. Zhang YJ, Bryan ND, Livens FR, Jones MN (1996) Complexing of metal ions by humic substances. Humic Fulvic Acids: Isol Struct Environ Role 651:194–206CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Loïc Sauvain
    • 1
  • Matthieu Bueche
    • 1
  • Thomas Junier
    • 1
  • Matthieu Masson
    • 2
  • Tina Wunderlin
    • 1
  • Roxane Kohler-Milleret
    • 3
  • Elena Gascon Diez
    • 4
  • Jean-Luc Loizeau
    • 4
  • Mary-Lou Tercier-Waeber
    • 2
  • Pilar Junier
    • 1
    Email author
  1. 1.Laboratory of MicrobiologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Analytical and Environmental Chemistry, Department of Inorganic and Analytical ChemistryUniversity of GenevaGenevaSwitzerland
  3. 3.Laboratory Soil and VegetationUniversity of NeuchâtelNeuchâtelSwitzerland
  4. 4.Earth and Environmental Science Section, Institute F.-A. ForelUniversity of GenevaGenevaSwitzerland

Personalised recommendations