Skip to main content

Advertisement

Log in

Modelling habitat requirements of bullhead (Cottus gobio) in Alpine streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

In the context of water resources planning and management, the prediction of fish distribution related to habitat characteristics is fundamental for the definition of environmental flows and habitat restoration measures. In particular, threatened and endemic fish species should be the targets of biodiversity safeguard and wildlife conservation actions. The recently developed meso-scale habitat model (MesoHABSIM) can provide solutions in this sense by using multivariate statistical techniques to predict fish species distribution and to define habitat suitability criteria. In this research, Random Forests (RF) and Logistic Regressions (LR) models were used to predict the distribution of bullhead (Cottus gobio) as a function of habitat conditions. In ten reference streams of the Alps (NW Italy), 95 mesohabitats were sampled for hydro-morphologic and biological parameters, and RF and LR were used to distinguish between absence/presence and presence/abundance of fish. The obtained models were compared on the basis of their performances (model accuracy, sensitivity, specificity, Cohen’s kappa and area under ROC curve). Results indicate that RF outperformed LR, for both absence/presence (RF: 84 % accuracy, k = 0.58 and AUC = 0.88; LR: 78 % accuracy, k = 0.54 and AUC = 0.85) and presence/abundance models (RF: 79 % accuracy, k = 0.57 and AUC = 0.87; LR: 69 % accuracy, k = 0.43 and AUC = 0.81). The most important variables, selected in each model, are discussed and compared to the available literature. Lastly, results from models’ application in regulated sites are presented to show the possible use of RF in predicting habitat availability for fish in Alpine streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamsson C, Johansson J, Sparén A, Lindgren F (2003) Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometrics Intellig Lab Syst 69:3–12

    Article  CAS  Google Scholar 

  • Acreman MC, Ferguson AJD (2010) Environmental flows and the European water framework directive. Freshwat Biol 55:32–48

    Article  Google Scholar 

  • Ahmadi-Nedushan B, St-Hilaire A, Bérubé M, Robichaud É, Thiémonge N, Bobée B (2006) A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Res Appl 22:503–523

    Article  Google Scholar 

  • Bain MB, Knight JG (1996) Classifying stream habitat using fish community analysis. In: Leclerc MCH, Valentin S, Boudreau A, Cote Z (eds) Ecohydraulics 2000. 2nd International Symposium on Habitat Hydraulics, INRS-Eau, Quebec City, pp 107–117

    Google Scholar 

  • Borsányi P, Alfredsen K, Harby A, Ugedal O, Borsányi CKL (2003) A meso-scale habitat classification method for production modelling of atlantic salmon in Norway

  • Breiman L (2001) Random forest. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and regression trees. Wadsworth and Brooks, Monterey

    Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biol 16:1145–1157

    Article  Google Scholar 

  • Carter MG, Copp GH, Szomlai V (2004) Seasonal abundance and microhabitat use of bullhead Cottus gobio and accompanying fish species in the River Avon (Hampshire), and implications for conservation. Aquatic Conserv 14:395–412

    Article  Google Scholar 

  • Cheng L, Lek S, Lek-Ang S, Li Z (2012) Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica 42:127–136

    Article  Google Scholar 

  • Ciuffardi L, Bassani I (2005) Segnalazione del successo riproduttivo della Lampreda di mare (Petromyzon marinus) in Provincia della Spezia. Biologia ambientale 19:15–16

    Google Scholar 

  • Comoglio C, Prato EP, Ferri M, Gianaroli M (2007) A case study of river rehabilitation for fish in northern Italy: the Panaro river project. Am J Environ Sci 3:85–92

    Article  Google Scholar 

  • Cowx IG, Harvey JP (2000) Monitoring the bullhead, Cottus gobio. Conserving Natura (2000) Rivers. English Nature Peterborough, UK

    Google Scholar 

  • Crivelli AJ (1996) The freshwater fish endemic to the Mediterranean region. An action plan for their conservation. Tour du Valat Publication

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  • Davey AJH, Hawkins SJ, Turner GF, Doncaster CP (2005) Size-dependent microhabitat use and intraspecific competition in Cottus gobio. J Fish Biol 67:428–443

    Article  Google Scholar 

  • Drew CA, Wiersma Y, Huettmann F (2011) Predictive species and habitat modeling in Landscape ecology: concepts and applications. Springer, New York

    Book  Google Scholar 

  • Evans J, Cushman S (2009) Gradient modeling of conifer species using random forests. Landscape Ecol 24:673–683

    Article  Google Scholar 

  • Filipe AF, Cowx IG, Collares-pereira MJ (2002) Spatial modelling of freshwater fish in semi-arid river systems: a tool for conservation. River Res Appl 18:123–136

    Article  Google Scholar 

  • Fox J (2007) Polycor: polychoric and polyserial correlations. R package version 0.7-5, http://CRAN.R-project.org/package=polycor. Accessed 3 April 2010

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New York

    Book  Google Scholar 

  • Frissell C, Liss W, Warren C, Hurley M (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage 10:199–214

    Article  Google Scholar 

  • Gandolfi G, Zenurian S, Torricelli P, Marconato A (1991) I pesci delle acque interne italiane—Italian inland water fishes. Ministero dell’Ambiente, Istituto Poligrafico e Zecca dello Stato, Roma

    Google Scholar 

  • Gosselin M, Petts G, Maddock I (2010) Mesohabitat use by bullhead (Cottus gobio). Hydrobiologia 652:299–310

    Article  Google Scholar 

  • Gosselin MP, Maddock I, Petts G (2012) Mesohabitat use by brown trout (Salmo trutta) in a small groundwater-dominated stream. River Res Appl 28:390–401

    Article  Google Scholar 

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17

    Article  Google Scholar 

  • Hauer C, Unfer G, Tritthart M, Formann E, Habersack H (2010) Variability of mesohabitat characteristics in riffle-pool reaches: testing an integrative evaluation concept (FGC) for MEM-application. River Res Appl. doi:10.1002/rra.1357

    Google Scholar 

  • Hayer CA, Wall SS, Berry CR Jr (2008) Evaluation of predicted fish distribution models for rare fish species in South Dakota. N Am J Fish Manage 28:1259–1269

    Article  Google Scholar 

  • Hooten MB (2011) The state of spatial and spatio-temporal statistical modeling. In: Drew C, Wiersma Y, Huettmann F (eds) Predictive species and habitat modeling in landscape ecology. Springer, New York, pp 29–41

    Chapter  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied Logistic Regression, 2nd edn. John Wiley & Sons, Inc., New York

    Book  Google Scholar 

  • Jewitt GPW, Weeks DC, Heritage GL, Gorgens AHM (2001) Modelling abiotic-biotic links in the rivers of the Kruger National Park Mpumulanga South Africa. In: Acreman M, Jewitt GPW (eds) Hydro-ecology: linking hydrology and aquatic ecology. Proceedings of Workshop HW2 held at Birmingham UK July 1999 IAHS Press, Wallingford, pp 77–90

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  • Kampichler C, Wieland R, Calmé S, Weissenberger H, Arriaga-Weiss S (2010) Classification in conservation biology: a comparison of five machine-learning methods. Ecol Inform 5:441–450

    Article  Google Scholar 

  • Kemp JL, Harper DM, Crosa GA (1999) Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation. Aquat Conserv: Mar Freshwat Ecosyst 9:159–178

    Article  Google Scholar 

  • Knaepkens G, Bruyndoncx L, Bervoets L, Eens M (2002) The presence of artificial stones predicts the occurrence of the European bullhead (Cottus gobio) in a regulated lowland river in Flanders (Belgium). Ecol Freshwat Fish 11:203–206

    Article  Google Scholar 

  • Knaepkens G, Baekelandt K, Eens M (2006) Fish pass effectiveness for bullhead (Cottus gobio), perch (Perca fluviatilis) and roach (Rutilus rutilus) in a regulated lowland river. Ecol Freshwat Fish 15:20–29

    Article  Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Soft. http://www.jstatsoft.org/v28/i05/paper. Accessed 22 November 2008

  • Langford TE, Hawkins SJ (1997) The distribution and abundance of three fish in relation to timber debris and mesohabitats in a lowland forest stream during autumn and winter. Limnetica 13:93–102

    Google Scholar 

  • Legalle M, Mastrorillo S, Santoul F, Céréghino R (2005a) Ontogenetic microhabitat shifts in the bullhead, Cottus gobio L., in a fast flowing stream. Internat Rev Hydrobiol 90:310–321

    Article  Google Scholar 

  • Legalle M, Santoul F, Figuerola J, Mastrorillo S, Céréghino R (2005b) Factors influencing the spatial distribution patterns of the bullhead (Cottus gobio L., Teleostei Cottidae): a multi-scale study. Biodivers Conserv 14:1319–1344

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by Random forest. R News 2:18–22

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Markovic D, Freyhof J, Wolter C (2012) Where are all the fish: potential of biogeographical maps to project current and future distribution patterns of freshwater species. PLoS ONE 7:e40530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Meador M, McIntyre J, Pollock K (2003) Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure. Trans Am Fish Soc 132:39–46

    Article  Google Scholar 

  • Melcher AH, Lautsch E, Schmutz S (2012) Non-parametric methods—Tree and P-CFA—for the ecological evaluation and assessment of suitable aquatic habitats: a contribution to fish psychology. Psych Test Ass Mod 54:293–306

    Google Scholar 

  • Mouton AM, Schneider M, Depestele J, Goethals PLM, De Pauw N (2007) Fish habitat modelling as a tool for river management. Ecol Eng 29:305–315

    Article  Google Scholar 

  • Mouton AM, De Baets B, Goethals PLM (2010) Ecological relevance of performance criteria for species distribution models. Ecol Model 221:1995–2002

    Article  Google Scholar 

  • Mouton AM, Alcaraz-Hernández JD, De Baets B, Goethals PLM, Martínez-Capel F (2011) Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environ Model Software 26:615–622

    Article  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Olden JD, Jackson DA (2002) A comparison of statistical approaches for modelling fish species distributions. Freshwat Biol 47:1976–1995

    Article  Google Scholar 

  • Olden JD, Jackson DA, Peres-Neto PR (2002) Predictive models of fish species distributions: a note on proper validation and chance predictions. Trans Am Fish Soc 131:329–336

    Article  Google Scholar 

  • Parasiewicz P (2001) MesoHABSIM: a concept for application of instream flow models in river restoration planning. Fisheries 26:6–13

    Article  Google Scholar 

  • Parasiewicz P (2007) The MesoHABSIM model revisited. River Res Appl 23:893–903

    Article  Google Scholar 

  • Parasiewicz P, Rogers J, Legros J, Wirth M (2007) Assessment and restoration of instream habitat of the Eightmile River in Connecticut: Developing a MesoHABSIM model. Report 62, p 65

  • Parasiewicz P, Nestler J, Poff NL, Goodwin A (2008) Virtual reference river: a model for scientific discovery and reconciliation. In: Alonso MS, Rubio IM (eds) Ecological management: new research. Nova Science Publishers, Inc., New York, pp 189–198

    Google Scholar 

  • Parasiewicz P, Castelli E, Rogers JN, Plunkett E (2012a) Multiplex modeling of physical habitat for endangered freshwater mussels. Ecol Modell 228:10

    Article  Google Scholar 

  • Parasiewicz P, Ryan K, Vezza P, Comoglio C, Ballestero T, Rogers JN (2012b) Use of quantitative habitat models for establishing performance metrics in river restoration planning. Ecohydrology. doi:10.1002/eco.1350

    Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Pini Prato E, Comoglio C, Calles O (2011) A simple management tool for planning the restoration of river longitudinal connectivity at watershed level: priority indices for fish passes. J Appl Ichthyol 27:73–79

    Article  Google Scholar 

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Regione Piemonte (2010) Proposta di piano regionale per la tutela e la conservazione degli ambienti e della fauna acquatica e l’esercizio della pesca. Regione Pimonte, Torino

    Google Scholar 

  • Regione Piemonte (2007) Piano di Tutela delle Acque–Regional Water Protection Plan, Volume D.C.R. n. 117-10731. Torino, Italia

  • Regione Valle d’Aosta (2008) Progetto di sperimentazione del DMV del gruppo C.V.A. Caratterizzazione Dora Baltea. Monografia 2008, Aosta, Italia

  • Reunanen J (2003) Overfitting in making comparisons between variable selection methods. J Mach Learn Res 3:1371–1382

    Google Scholar 

  • Roussel JM, Bardonnet A (1996) Differences in habitat use by day and night for brown trout (Salmo trutta) and sculpin (Cottus gobio) in a natural brook: multivariate and multi-scale analyses. Cybium 20:45–53

    Google Scholar 

  • Sakamoto Y (1994) Categorical data analysis by AIC. In: Bozdogan H (ed) Proceedings of the first US/Japan conference on the frontiers of statistical modeling: an informational approach. Kluwer Academic Publishers, Dordrecht, pp 255–269

    Chapter  Google Scholar 

  • Siroky DS (2009) Navigating random forests and related advances in algorithmic modeling. Stat Surveys 3:147–163

    Article  Google Scholar 

  • Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62:77–89

    Article  Google Scholar 

  • Steyerberg EW, Harrell FE Jr, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Bovee KD (1993) Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regul Rivers: Res Manage 8:285–294

    Article  CAS  Google Scholar 

  • Tirelli T, Pozzi L, Pessani D (2009) Use of different approaches to model presence/absence of Salmo marmoratus in Piedmont (Northwestern Italy). Ecol Inform 4:234–242

    Article  Google Scholar 

  • Tomlinson ML, Perrow (2003) Ecology of the bullhead. Conserving Natura 2000 Rivers Ecology. English Nature, Peterborough

    Google Scholar 

  • Van Liefferinge C, Seeuws P, Meire P, Verheyen RF (2005) Microhabitat use and preferences of the endangered Cottus gobio in the River Voer, Belgium. J Fish Biol 67:897–909

    Article  Google Scholar 

  • Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730

    Article  Google Scholar 

  • Vezza P, Comoglio C, Rosso M, Viglione A (2010) Low flows regionalization in north-western Italy. Water Resour Manage 24(14):4049–4074

    Article  Google Scholar 

  • Vezza P, Parasiewicz P, Rosso M, Comoglio C (2012a) Defining minimum environmental flows at regional scale: application of mesoscale habitat models and catchments classification. River Res Appl 28:675–792

    Article  Google Scholar 

  • Vezza P, Parasiewicz P, Spairani M, Comoglio C (2012b) Meso-scale habitat modelling in Alpine high gradient streams. In: Mader H, Kraml J (eds) Proceeding of the 9th Eco-hydraulics Symposium ISE 2012. Austria, Vienna

    Google Scholar 

  • Vezza P, Parasiewicz P, Spairani M, Comoglio C (2013) Habitat modelling in high gradient streams: the meso-scale approach and application. Ecol Appl In press

  • Wells BJ, Yu C, Koroukian S, Kattan MW (2011) Comparison of variable selection methods for the generation of parsimonious prediction models for use in clinical practice. In: SMDM (ed) Proceedings of the 33rd Annual Meeting of the Society for Medical Decision Making. SMDM, Chicago

    Google Scholar 

  • Xu L, Zhang W-J (2001) Comparison of different methods for variable selection. Anal Chim Acta 446:475–481

    Article  Google Scholar 

  • Zerunian S (2002a) Condannati all’estinzione? Biodiversità, biologia, minacce e strategie di conservazione dei Pesci d’acqua dolce indigeni in Italia. Edagricole, Bologna

    Google Scholar 

  • Zerunian S (2002b) Iconography of Italian inland water Fishes. Tipolitografia FG—Savignano s/P (Mo), Roma

    Google Scholar 

  • Zerunian S (2007) Problematiche di conservazione dei Pesci d’acqua dolce italiani. Biologia Ambientale 21:49–55

    Google Scholar 

Download references

Acknowledgments

The presented research was developed in the framework of the HolRiverMed project (275577—FP7-PEOPLE-2010-IEF, Marie Curie Actions) and in collaboration with the Regional Consortium for Fisheries Management in the Aosta Valley (Consorzio Regionale Tutela Pesca - Valle d’Aosta). The data collection was funded by the Regione Piemonte (C61 Project—CIPE 2004) and through the dams monitoring program of Compagnia Valdostana delle Acque (CVA S.p.a.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vezza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vezza, P., Parasiewicz, P., Calles, O. et al. Modelling habitat requirements of bullhead (Cottus gobio) in Alpine streams. Aquat Sci 76, 1–15 (2014). https://doi.org/10.1007/s00027-013-0306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0306-7

Keywords

Navigation