Aquatic Sciences

, Volume 75, Issue 4, pp 535–545 | Cite as

Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes

  • R. A. Müller
  • M. N. Futter
  • S. Sobek
  • J. Nisell
  • K. Bishop
  • G. A. Weyhenmeyer
Research Article

Abstract

The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts.

Keywords

Lake Landscape Time Organic carbon Colour 

References

  1. Ågren A, Buffam I, Bishop K, Laudon H (2010) Modelling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res 115(G1):G01012CrossRefGoogle Scholar
  2. Alexander R, Boyer E, Smith R, Schwarz G, Moore R (2007) The role of headwater streams in downstream water quality. JAWRA J Am Water Res Assoc 43(1):41–59CrossRefGoogle Scholar
  3. Algesten G, Sobek S, Bergström A-K, Ågren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol 10(1):141–147. doi:10.1111/j.1365-2486.2003.00721.x CrossRefGoogle Scholar
  4. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, Del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4(9):593–596CrossRefGoogle Scholar
  5. Battin T, Luyssaert S, Kaplan L, Aufdenkampe A, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600CrossRefGoogle Scholar
  6. Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25(1):58–62CrossRefGoogle Scholar
  7. Canham CD, Pace ML (2009) A spatially explicit, mass-balance analysis of watershed-scale controls on lake chemistry. Real World Ecology. In: Miao S, Carstenn S, Nungesser M (eds). Springer New York, pp 209–233. doi:10.1007/978-0-387-77942-3_8
  8. Cole J, Prairie Y, Caraco N, McDowell W, Tranvik LJ, Striegl R, Duarte C, Kortelainen P, Downing J, Middelburg J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185CrossRefGoogle Scholar
  9. Egeberg PK, Eikenes M, Gjessing ET (1999) Organic nitrogen distribution in NOM size classes. Environ Int 25(2–3):225–236. doi:10.1016/s0160-4120(98)00101-9 CrossRefGoogle Scholar
  10. Findlay S, Sinsabaugh R (2003) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, BostonGoogle Scholar
  11. Goodman KJ, Baker MA, Wurtsbaugh WA (2011) Lakes as buffers of stream dissolved organic matter (DOM) variability: Temporal patterns of DOM characteristics in mountain stream-lake systems. J Geophys Res-Biogeosci 116. doi:10.1029/2011jg001709
  12. Göransson E, Johnson RK, Wilander A (2004) Representativity of a mid-lake surface water chemistry sample. Environ Monit Assess 95(1):221–238PubMedCrossRefGoogle Scholar
  13. Hecky R, Campbell P, Hendzel L (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38(4):709–724CrossRefGoogle Scholar
  14. Hu CM, Muller-Karger FE, Zepp RG (2002) Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnol Oceanogr 47(4):1261–1267Google Scholar
  15. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, UKCrossRefGoogle Scholar
  16. Kling GW, Kipphut GW, Miller MM, O’Brien WJ (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43(3):477–497. doi:10.1046/j.1365-2427.2000.00515.x CrossRefGoogle Scholar
  17. Köhler B, von Wachenfeldt E, Kothawala D, Tranvik LJ (2012) Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res-Biogeosci 117. doi:10.1029/2011JG001793
  18. Kratz T, Webster K, Bowser C, Maguson J, Benson B (1997) The influence of landscape position on lakes in northern Wisconsin. Freshw Biol 37(1):209–217. doi:10.1046/j.1365-2427.1997.00149.x CrossRefGoogle Scholar
  19. Larson JH, Frost PC, Zheng ZY, Johnston CA, Bridgham SD, Lodge DM, Lamberti GA (2007) Effects of upstream lakes on dissolved organic matter in streams. Limnol Oceanogr 52(1):60–69CrossRefGoogle Scholar
  20. Lindström G, Bergström S (2004) Runoff trends in Sweden 1807–2002. Hydrol Sci J/Journal des Sciences Hydrologiques 49(1):69–83CrossRefGoogle Scholar
  21. Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288. doi:10.1016/s0022-1694(97)00041-3 CrossRefGoogle Scholar
  22. Martin S, Soranno P (2006) Lake landscape position: relationships to hydrologic connectivity and landscape features. Limnol Oceanogr 51(2):801–814CrossRefGoogle Scholar
  23. McDonnell J, McGuire K, Aggarwal P, Beven K, Biondi D, Destouni G, Dunn S, James A, Kirchner J, Kraft P (2010) How old is stream water? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrol Process 24(12):1745–1754CrossRefGoogle Scholar
  24. McGuire K, McDonnell J, Weiler M, Kendall C, McGlynn B, Welker J, Seibert J (2005) The role of topography on catchment-scale water residence time. Water Resour Res 41(5):W05002CrossRefGoogle Scholar
  25. Meili M (1992) Sources, concentrations and characteristics of organic matter in soft water lakes and streams of the Swedish forest region. Hydrobiologia 229(1):23–41CrossRefGoogle Scholar
  26. Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of water residence time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553CrossRefGoogle Scholar
  27. Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42(2):239–249CrossRefGoogle Scholar
  28. Sadro S, Nelson CE, Melack JM (2012) The Influence of landscape position and catchment characteristics on aquatic biogeochemistry in high-elevation lake-chains. Ecosystems 15(3):363–386. doi:10.1007/s10021-011-9515-x CrossRefGoogle Scholar
  29. Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton M, Kelly C (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in Precambrian shield lakes. Hydrobiologia 229(1):1–21CrossRefGoogle Scholar
  30. Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank D, Fee E, Schindler E, Stainton M (1996) The effects of climatic warming on the properties of boreal lakes and streams at the experimental Lakes area, north-western Ontario. Limnol Oceanogr 41(5):1004–1017CrossRefGoogle Scholar
  31. Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36(1):9–28. doi:10.1023/a:1005792014547 CrossRefGoogle Scholar
  32. Sobek S, Nisell J, Fölster J (2011) Predicting the depth and volume of lakes from map-derived parameters. Inland Waters 1(3):177–184Google Scholar
  33. Soranno PA, Webster KE, Riera JL, Kratz TK, Baron JS, Bukaveckas PA, Kling GW, White DS, Caine N, Lathrop RC, Leavitt PR (1999) Spatial variation among lakes within landscapes: ecological organization along lake chains. Ecosystems 2(5):395–410. doi:10.1007/s100219900089 CrossRefGoogle Scholar
  34. Soranno PA, Cheruvelil KS, Webster KE, Bremigan MT, Wagner T, Stow CA (2010) Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. Bioscience 60(6):440–454. doi:10.1525/bio.2010.60.6.8 CrossRefGoogle Scholar
  35. Steinberg C (2003) Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches. Springer, New YorkCrossRefGoogle Scholar
  36. Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71(2):104–126. doi:10.1007/s00027-008-8082-5 CrossRefGoogle Scholar
  37. Tokunaga E (2003) Tiling properties of drainage basins and their physical bases. In: Evans IS, Dikau R, Tokunaga E, Ohmori H, Hirano M (eds) Concepts and modelling in geomorphology: International perspectives. TERRAPUB, Tokyo, pp 147–166Google Scholar
  38. Tranvik LJ (1998) Degradation of dissolved organic matter in humic waters by bacteria. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances: ecology and biogeochemistry. Ecological studies, vol 133. Springer, New York, pp 259–283CrossRefGoogle Scholar
  39. Tranvik LJ, Downing J, Cotner J, Loiselle S, Striegl R, Ballatore T, Dillon P, Finlay K, Fortino K, Knoll L (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6):2298–2314CrossRefGoogle Scholar
  40. Vähätalo AV, Wetzel RG (2004) Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures. Mar Chem 89(1–4):313–326. doi:10.1016/j.marchem.2004.03.010 CrossRefGoogle Scholar
  41. Vollenweider RA (1976) Advances in defining critical loading levels of phosphorus in Lake Eutrophication. Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi 33:53–83Google Scholar
  42. von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11(5):803–814CrossRefGoogle Scholar
  43. Wetzel R (2001) Limnology: lake and river ecosystems, vol 1006. Academic Press, San DiegoGoogle Scholar
  44. Weyhenmeyer GA, Fröberg M, Karltun E, Khalili M, Kothawala D, Temnerud J, Tranvik LJ (2012) Selective decay of terrestrial organic carbon during transport from land to sea. Glob Change Biol 18(1):349–355. doi:10.1111/j.1365-2486.2011.02544.x CrossRefGoogle Scholar
  45. Zimmerman JTF (1988) Estuarine residence times. In: Kjerfve B (ed) Hydrodynamics of Estuaries, vol 1. CRC Press, Boca Raton, pp 75–84Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • R. A. Müller
    • 1
  • M. N. Futter
    • 2
  • S. Sobek
    • 1
  • J. Nisell
    • 2
  • K. Bishop
    • 2
  • G. A. Weyhenmeyer
    • 1
  1. 1.Department of Ecology and Genetics/LimnologyUppsala UniversityUppsalaSweden
  2. 2.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural Sciences (SLU)UppsalaSweden

Personalised recommendations