Skip to main content

Advertisement

Log in

Physics of seasonally ice-covered lakes: a review

  • Overview Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Recently, the attention to the ice season in lakes has been growing remarkably amongst limnological communities, in particular, due to interest in the response of mid- and high-latitude lakes to global warming. We review the present advances in understanding the governing physical processes in seasonally ice-covered lakes. Emphasis is placed on the general description of the main physical mechanisms that distinguish the ice-covered season from open water conditions. Physical properties of both ice cover and ice-covered water column are considered. For the former, growth and decay of the seasonal ice, its structure, mechanical and optical properties are discussed. The latter subject deals with circulation and mixing under ice. The relative contribution of the two major circulation drivers, namely heat release from sediment and solar heating, is used for classifying the typical circulation and mixing patterns under ice. In order to provide a physical basis for lake ice phenology, the heat transfer processes related to formation and melting of the seasonal ice cover are discussed in a separate section. Since the ice-covered period in lakes remains poorly investigated to date, this review aims at elaborating an effective strategy for future research based on modern field and modeling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adrian R, O’Reilly C, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. doi:10.4319/lo.2009.54.6_part_2.2283

    PubMed  Google Scholar 

  • Anderson DL (1961) Growth rate of sea ice. J Glaciol 3(30):1170–1172

    Google Scholar 

  • Andreas EL (1998) The atmospheric boundary layer over polar marine surfaces. In: Leppäranta M (ed) The physics of ice-covered seas, v 2. Helsinki University Press, Helsinki, pp 715–773

    Google Scholar 

  • Arst H (2003) Optical properties and remote sensing of multicomponental water bodies. Springer, Chichester

    Google Scholar 

  • Arst H, Erm A, Leppäranta M, Reinart A (2006) Radiative characteristics of ice-covered freshwater and brackish water bodies. Proc Est Acad Sci Geol 55:3–23

    Google Scholar 

  • Ashton GD (1980) Freshwater ice growth, motion and decay. In: Colbeck S (ed) Dynamics of snow and ice masses, pp 261–304

  • Ashton G (ed) (1986) River and lake ice engineering. Water Resources Publications, Littleton

    Google Scholar 

  • Assel RA, Herche LH (2000) Coherence of long-term lake ice records. Verh Int Verein Limnol 27:2789–2792

    Google Scholar 

  • Baehr MM, DeGrandpre MD (2002) Under-ice CO2 and O2 variability in a freshwater lake. Biogeochemistry 61:95–113

    CAS  Google Scholar 

  • Barica J, Mathias JA (1979) Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. J Fish Res Board Can 36:980–986

    Google Scholar 

  • Bates RE, Bilello MA (1966) Defining the cold regions of the Northern Hemisphere. TR 178. US Army Cold Regions Research and Engineering Laboratory, Hanover

  • Bengtsson L (1986) Dispersion in ice-covered lakes. Nordic Hydrol 17:151–170

    Google Scholar 

  • Bengtsson L (1996) Mixing in ice-covered lakes. Hydrobiologia 322:91–97

    Google Scholar 

  • Bengtsson L (2011) Ice-covered lakes: environment and climate-required research. Hydrol Process 25:2767–2769. doi:10.1002/hyp.8098

    Google Scholar 

  • Bernhardt J, Engelhardt C, Kirillin G, Matschullat J (2011) Lake ice phenology in Berlin–Brandenburg from 1947–2007: observations and model hindcasts. Clim Change. doi:10.1007/s10584-011-0248-9

  • Beutel MW (2001) Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia 466:107–117

    CAS  Google Scholar 

  • Boehrer B, Fukuyama R, Chikita K (2008) Stratification of very deep, thermally stratified lakes. Geophys Res Lett 35:L16405. doi:10.1029/2008GL034519

    Google Scholar 

  • Boudreau BP, Jørgensen BB (2001) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, USA

    Google Scholar 

  • Boylen CW, Brock TD (1973) Bacterial decomposition processes in Lake Wingra sediments during winter. Limnol Oceanogr 18:628–634

    CAS  Google Scholar 

  • Brekhovskikh VF, Gashkina NA, Kremenetskaya ER, Lomova DV (2003) Oxygen regime of the Mozhaisk Reservoir during under ice period. Rus Meteorol Hydrol 1:103–109 (in Russian)

    Google Scholar 

  • Bryant LD, Lorrai C, McGinnis DF, Brand A, Wüest A, Little JC (2010) Variable sediment oxygen uptake in response to dynamic forcing. Limnol Oceanogr 55:950–964

    CAS  Google Scholar 

  • Burda NY (1999) Computer simulation for Ladoga Lake ice dynamics based on remotely sensed data. Int Geosci Remote Sens Symp 2:937–939

    Google Scholar 

  • Carmack EC, Farmer DM (1982) Cooling processes in deep, temperate lakes: a review with examples from two lakes in British Columbia. J Mar Res 40:85–111

    Google Scholar 

  • Carmack E, Weiss R (1991) Convection in Lake Baikal: an example of thermobaric instability. In: Chu PC, Gascard JC (eds) Deep convection and deep water formation in the oceans. Elsevier, Amsterdam, pp 215–228

    Google Scholar 

  • Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusik P, Buchaca T, Camarero L, Goudsmit GH, Kopacek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46

    Google Scholar 

  • Colman JA, Armstrong DE (1983) Horizontal diffusivity in a small, ice-covered lake. Limnol Oceanogr 28:1020–1026

    Google Scholar 

  • Crawford G, Collier R (2007) Long-term observations of deepwater renewal in Crater Lake, Oregon. Hydrobiologia 574:47–68

    CAS  Google Scholar 

  • Croley TE II, Assel RA (1994) A one-dimensional ice thermodynamics model for the Laurentian Great Lakes. Water Resour Res 30(3):625–639. doi:10.1029/93WR03415

    Google Scholar 

  • Duguay CR, Pultz TJ, Lafleur PM, Drai D (2002) RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada. Hydrol Process 16(8):1631–1644

    Google Scholar 

  • Duguay CR, Flato GM, Jeffries MO, Ménard P, Morris K, Rouse WR (2003) Ice-cover variability on shallow lakes at high latitudes: model simulations and observations. Hydrol Process 17:3464–3483

    Google Scholar 

  • Duguay CR, Prowse TD, Bonsal BR, Brown RD, Lacroix MP, Menard P (2006) Recent trends in Canadian lake ice cover. Hydrol Process 20:781–801

    Google Scholar 

  • Efremova T, Palshin N (2011) Ice phenomena terms on the water bodies of Northwestern Russia. Rus Meteorol Hydrol 36(8):559–565

    Google Scholar 

  • Ellis CR, Stefan HG (1989) Oxygen demand in ice covered lakes as it pertains to winter aeration. Water Resour Bull 25:1169–1176

    CAS  Google Scholar 

  • Farmer DM (1975) Penetrative convection in the absence of mean shear. Q J R Meteorol Soc 101:869–891. doi:10.1002/qj.49710143011

    Google Scholar 

  • Farmer DM, Carmack E (1981) Wind mixing and restratification in a lake near the temperature of maximum density. J Phys Oceanogr 11:1516–1533

    Google Scholar 

  • Forrest AL, Laval BE, Pieters R, Lim DSS (2008) Convectively driven transport in temperate lakes. Limnol Oceanogr 53:2321–2332

    Google Scholar 

  • George G (ed) (2010) The impact of climate change on European lakes, 1st edn. Springer, Berlin

    Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics. Academic Press, NY

    Google Scholar 

  • Golosov S, Maher OA, Schipunova E, Terzhevik A, Zdorovennova G, Kirillin G (2007) Physical background of the development of oxygen depletion in ice-covered lakes. Oecologia 151:331–340

    PubMed  CAS  Google Scholar 

  • Golosov S, Terzhevik A, Zverev I, Kirillin G, Engelhardt C (2012) Climate change impact on thermal and oxygen regime of shallow lakes. Tellus A 64:17264. doi:10.3402/tellusa.v64i0.17264

    Google Scholar 

  • Götzinger G (1909) Studien über das Eis des Lunzer Unter-und Obersees. Int Rev ges Hydrobiol Hydrogr 2:386–396

    Google Scholar 

  • Gow AJ (1986) Orientation textures in ice sheets of quietly frozen lakes. J Crystal Growth 74:247–258

    CAS  Google Scholar 

  • Gow AJ, Govoni JW (1983) Ice growth on post pond, 1973–1982. Cold Regions Research and Engineering Laboratory report 83–4

  • Granin N, Gnatovskiy RY, Zhdanov A, Zehanovsky VV, Gorbunova LA (1999a) Convection and mixing under the ice of Lake Baikal. Sibirskij Ecologicheskij Zhurnal 6:597–600 (in Russian)

    Google Scholar 

  • Granin N, Jewson D, Gnatovsky RY, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tcekhanovsky VV, Doroschenko LF, Min’ko NP, Grachev MA (1999b) Turbulent mixing in the water layer just below the ice and its role in development of diatomic algae in Lake Baikal. Dokl Acad Sci USSR 366:835–839 (in Russian)

    CAS  Google Scholar 

  • Greenbank J (1945) Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecol Monogr 15:343–391

    Google Scholar 

  • Haapala J, Leppäranta M (1997) The Baltic Sea ice season in changing climate. Boreal Env Res 2:93–108

    Google Scholar 

  • Halsey TG (1968) Autumnal and over-winter limnology of three small eutrophic lakes with particular reference to experimental circulation and trout mortality. J Fish Res Board Can 25:81–99

    Google Scholar 

  • Hamblin PF, Carmack EC (1990) On the rate of heat transfer between a lake and an ice sheet. Cold Reg Sci Technol 18:173–182

    Google Scholar 

  • Hargrave BT (1969) Similarity of oxygen uptake by benthic communities. Limnol Oceanogr 14:801–805

    Google Scholar 

  • Higashino M, Gantzer CJ, Stefan HG (2004) Unsteady diffusional mass transfer at the sediment/water interface: theory and significance for SOD measurement. Water Res 38:1–12

    PubMed  CAS  Google Scholar 

  • Hohmann R, Kipfer R, Peeters F, Piepke G, Imboden DM, Shimaraev MN (1997) Processes of deep-water renewal in Lake Baikal. Limnol Oceanogr 42:841–855

    CAS  Google Scholar 

  • Huang WF, Li Z, Han H, Niu F, Lin Z, Leppäranta M (2012) Structural analysis of thermokarst lake ice in Beiluhe Basin, Qinghai–Tibet Plateau. Cold Reg Sci Technol 72:33–42

    Google Scholar 

  • Hutchinson GE, Löffler H (1956) The thermal classification of lakes. Proc Nat Acad Sci USA 42:84–86

    PubMed  CAS  Google Scholar 

  • Huttula T, Pulkkanen M, Arkhipov B, Leppäranta M, Solbakov V, Shirasawa K, Salonen K (2010) Modelling circulation in an ice-covered Lake. Est J Earth Sci 59:298–309

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Cambridge University Press, Cambridge, UK

  • Jakkila J, Leppäranta M, Kawamura T, Shirasawa K, Salonen K (2009) Radiation transfer and heat budget during the ice season in Lake Pääjärvi, Finland. Aquat Ecol 43:681–692

    Google Scholar 

  • Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno PA, Stewart KM (2007) Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol Oceanogr 52:2013–2026

    Google Scholar 

  • Jewson D, Granin N, Zhdanov A, Gnatovsky R (2009) Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquat Ecol 43:673–679. doi:10.1007/s10452-009-9267-2

    CAS  Google Scholar 

  • Jonas T, Terzhevik AY, Mironov DV, Wüest A (2003) Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. J Geophys Res 108(C6):3183. doi:10.1029/2002JC001316

    Google Scholar 

  • Karetnikov S, Naumenko MA (2008) Recent trends in Lake Ladoga ice cover. Hydrobiologia 599:41–48

    Google Scholar 

  • Kärkäs E (2000) The ice season of Lake Pääjärvi, southern Finland. Geophysica 36:85–94

    Google Scholar 

  • Kelley DE (1997) Convection in ice-covered lakes: effects on algal suspension. J Plankton Res 19(12):1859–1880. doi:10.1093/plankt/19.12.1859

    Google Scholar 

  • Kenney B (1996) Physical limnological processes under ice. Hydrobiologia 322:85–90

    Google Scholar 

  • Kirillin G (2010) Modelling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Env Res 15:279–293

    Google Scholar 

  • Kirillin G, Terzhevik A (2011) Thermal instability in freshwater lakes under ice: effect of salt gradients or solar radiation? Cold Reg Sci Technol 65:184–190. doi:10.1016/j.coldregions.2010.08.010

    Google Scholar 

  • Kirillin G, Engelhardt C, Golosov S, Hintze T (2009) Basin-scale internal waves in the bottom boundary layer of ice-covered Lake Müggelsee, Germany. Aquat Ecol 43:641–651. doi:10.1007/s10452-009-9274-3

    Google Scholar 

  • Kirillin G, Rizk W, Leppäranta M (2012) Convective mixing by solar radiation under lake ice. In: Li Z, Lu P (eds) Ice research for a sustainable environment. Proceedings of 21st IAHR international symposium on ice, Dalian University of Technology Press, Dalian, China, pp 1201–1211. ISBN: 978-7-89437-020-4. http://www.iahr.net/site/e_library/. Accessed Aug 2012

  • Kondratyev KYa, Filatov N (eds) (1999) Limnology and remote sensing. A contemporary approach. Springer-Praxis, Chichester

    Google Scholar 

  • Korhonen J (2006) Long-term changes in lake ice cover in Finland. Nordic Hydrol 37:347–363

    Google Scholar 

  • Kouraev AV, Shimaraev MN, Buharizin PI, Naumenko MA, Crétaux JF, Mognard N, Legrésy B, Rémy F (2008) Ice and snow cover of continental water bodies from simultaneous radar altimetry and radiometry observations. Surv Geophys 29:271–295. doi:10.1007/s10712-008-9042-2

    Google Scholar 

  • Koźmiński Z, Wisznewski J (1934) Über die Vorfrühlingthermik der Wigry-Seen. Archiv f Hydrobiol 28:198–235

    Google Scholar 

  • Lei R, Leppäranta M, Erm A, Jaatinen E, Pärn O et al (2011) Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Est J Earth Sci 60(1):50–64

    Google Scholar 

  • Lei R, Leppäranta M, Cheng B, Heil P, Li Z (2012) Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008. Clim Change. doi:10.1007/s10584-012-0489-2 (online first)

    Google Scholar 

  • Leppäranta M (1983) A growth model for black ice, snow ice and snow thickness in subarctic basins. Nordic Hydrol 14:59–70

    Google Scholar 

  • Leppäranta M (1993) A review of analytical models of sea-ice growth. Atmos Ocean 31:123–138

    Google Scholar 

  • Leppäranta M (2009) Modelling of formation and decay of lake ice. In: George G (ed) Climate change impact on European lakes. Springer, Netherlands, pp 63–83

    Google Scholar 

  • Leppäranta M (2011) The drift of sea ice, 2nd edn. Springer-Praxis, Heidelberg

    Google Scholar 

  • Leppäranta M, Kosloff P (2000) The thickness and structure of Lake Pääjärvi ice. Geophysica 36:233–248

    Google Scholar 

  • Leppäranta M, Lewis JE (2007) Observations of Ice Surface Temperature and Thickness in the Baltic Sea. Int J Remote Sens 28(17):3963–3977. doi:10.1080/01431160601075616

    Google Scholar 

  • Leppäranta M, Wang K (2008) The ice cover on small and large lakes: scaling analysis and mathematical modelling. Hydrobiologia 599:183–189

    Google Scholar 

  • Leppäranta M, Tikkanen M, Virkanen J (2003) Observations of ice impurities in some Finnish lakes. Proc Est Acad Sci Chem 52:59–75

    Google Scholar 

  • Leppäranta M, Terzhevik A, Shirasawa K (2010) Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia. Hydrol Res 41:50–62

    Google Scholar 

  • Li Z, Huang W-F, Jia Q, Leppäranta M (2011) Distributions of crystals and gas bubbles in reservoir ice during growth period. Water Sci Eng 4(2):204–211. doi:10.3882/j.issn.1674-2370.2011.02.008

    Google Scholar 

  • Likens GE, Ragotzkie RA (1965) Vertical water motions in a small ice-covered lake. J Geophys Res 70:2333–2344. doi:196510.1029/JZ070i010p02333

    Google Scholar 

  • Likens GE, Ragotzkie RA (1966) Rotary circulation of water in an ice-covered lake. Verh Int Ver Theor Angew Limnol 16:126–133

    Google Scholar 

  • Lilly DK (1968) Models of cloud-topped mixed layers under a strong inversion. Q J R Meteorol Soc 94(401):292–309

    Google Scholar 

  • Livingstone DM (2000) Large scale climatic forcing detected in historical observations of lake-ice break-up. Verh Int Ver Theor Angew Limnol 27(5):2775–2783

    Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746 (errata 2001 Science 291:254)

    PubMed  CAS  Google Scholar 

  • Malm J (1998) Bottom buoyancy layer in an ice-covered lake. Water Resour Res 34:2981–2993

    Google Scholar 

  • Malm J (1999) Some properties of currents and mixing in a shallow ice-covered lake. Water Resour Res 35:221–232

    Google Scholar 

  • Malm J, Terzhevik A, Bengtsson L, Boyarinov P, Glinsky A, Palshin N, Petrov M (1997) Temperature and salt content regimes in three shallow ice-covered lakes. 2. Heat and mass fluxes. Nordic Hydrol 28:129–152

    Google Scholar 

  • Malm J, Bengtsson L, Terzhevik A, Boyarinov P, Glinsky A, Palshin N, Petrov M (1998) Field study on currents in a shallow, ice-covered lake. Limnol Oceanogr 43:1669–1679

    Google Scholar 

  • Margesin R, Schinner F (eds) (1999) Cold-adapted organisms. Springer, Heidelberg

    Google Scholar 

  • Marisol F, Sattler B, Psenner R, Catalan J (1995) Highly active microbial communities in the ice and snow cover of high mountain lakes. Appl Environ Microbiol 61:2394–2401

    Google Scholar 

  • Marszelewski W, Skowron R (2006) Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes. Hydrol Sciences J 51:336–349

    Google Scholar 

  • Matzinger A, Müller B, Niederhauser P, Schmid M, Wüest A (2010) Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol Oceanogr 55:2073–2084

    CAS  Google Scholar 

  • Maykut GA, Untersteiner N (1971) Some results from a time-dependent, thermodynamic model of sea ice. J Geophys Res 76:1550–1575

    Google Scholar 

  • McPhee M (2008) Air–ice–ocean interaction: turbulent boundary layer exchange processes. Springer, Berlin

    Google Scholar 

  • Michel B (1978) Ice mechanics. Laval University Press, Quebec City

    Google Scholar 

  • Michel B, Ramseier RO (1971) Classification of river and lake ice. Can Geotech J 8:36–45

    Google Scholar 

  • Mironov D, Terzhevik A, Kirillin G, Jonas T, Malm J, Farmer D (2002) Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J Geophys Res 107(C4). doi:10.1029/2001JC000892

  • Mortimer C, Mackereth F (1958) Convection and its consequences in ice-covered lakes. Verh Int Ver Limnol 13:923–932

    Google Scholar 

  • Mullen PC, Warren SG (1988) Theory of optical properties of lake ice. J Geophys Res 93((D7)):8403–8414

    Google Scholar 

  • Müller B, Bryant LD, Matzinger A, Wüest A (2012) Hypolimnetic oxygen depletion in eutrophic lakes. Env Sci Technol. doi:10.1021/es301422r

    Google Scholar 

  • Oveisy A, Boegman L, Imberger J (2012) Three-dimensional simulation of lake and ice dynamics during winter. Limnol Oceanogr 57:43–57

    Google Scholar 

  • Palosuo E (1965) Frozen slush on lake ice. Geophysica 9:36–45

    Google Scholar 

  • Petrov M, Terzhevik A, Zdorovennov R, Zdorovennova G (2006) The thermal structure of a shallow lake in early winter. Water Resour 33:135–143. doi:10.1134/S0097807806020035

    CAS  Google Scholar 

  • Petrov M, Terzhevik A, Zdorovennov R, Zdorovennova G (2007) Motion of water in an ice-covered shallow lake. Water Resour 34(2):113–122. doi:10.1134/S0097807807020017

    CAS  Google Scholar 

  • Phillips OM (1970) On flows induced by diffusion in a stably stratified fluid. Deep Sea Res Oceanogr Abs 17:435–443. doi:10.1016/0011-7471(70)90058-6

    Google Scholar 

  • Pieters R, Lawrence GA (2009) Effect of salt exclusion from lake ice on seasonal circulation. Limnol Oceanogr 54:401–412

    CAS  Google Scholar 

  • Pivovarov (1973) Thermal conditions in freezing lakes and rivers. Wiley, New York

    Google Scholar 

  • Puklakov VV, Edel’shtein KK, Kremenetskaya ER, Gashkina NA (2002) Water self purification in the Mozhaisk Reservoir in winter. Water Resour 29(6):655–664

    CAS  Google Scholar 

  • Rahm L (1985) The thermally forced circulation in a small, ice-covered lake. Limnol Oceanogr 30:1122–1128

    Google Scholar 

  • Reinart A, Arst H, Nõges P, Nõges T (2000) Comparison of euphotic layer criteria in lakes. Geophysica 36:141–159

    Google Scholar 

  • Robertson DM, Ragotszkie RA, Magnuson JJ (1992) Lake ice records used to detect historical and future climatic change. Clim Change 2:407–427

    Google Scholar 

  • Salonen K, Leppäranta M, Viljanen M, Gulati R (2009) Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquat Ecol 43:609–616

    Google Scholar 

  • Saloranta T (2000) Modeling the evolution of snow, snow ice and ice in the Baltic Sea. Tellus A 52:93–108

    Google Scholar 

  • Saloranta T, Andersen T (2007) MyLake—a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol Model 207(1):45–60

    Google Scholar 

  • Schmid M, Budnev NM, Granin NG, Sturm M, Schurter M, Wüest A (2008) Lake Baikal deepwater renewal mystery solved. Geophys Res Lett 35:L09605. doi:10.1029/2008GL033223

    Google Scholar 

  • Sherstyankin PP (1975) The experimental investigations of under ice light field of Lake Baikal. Nauka, Moscow (in Russian)

    Google Scholar 

  • Sherstyankin PP (1992) Optical observations on front generation in Lake Baikal. Dokl Acad Sci Russ 356:366–370 (in Russian)

    Google Scholar 

  • Shimaraev M, Granin N (1991) Temperature stratification and the mechanism of convection in Lake Baikal. Dokl Acad Sci Russ 321:381–385 (in Russian)

    Google Scholar 

  • Shimaraev MN, Granin NG, Domysheva VM, Zhdanov AA, Golobokova LP, Gnatovskii RY, Tsekhanovskii VV, Blinov VV (2003) Water exchange between bed depressions in Baikal. Water Resour 30:623–626. doi:10.1023/B:WARE.0000007587.23858.ab

    CAS  Google Scholar 

  • Shimaraev MN, Gnatovskii RY, Blinov VV, Ivanov VG (2011) Renewal of deep waters of Lake Baikal revisited. Dokl Earth Sci 438:652–655. doi:10.1134/S1028334X11050096

    CAS  Google Scholar 

  • Shirasawa K, Leppäranta M, Saloranta T, Polomoshnov A, Surkov G, Kawamura T (2005) The thickness of landfast ice in the Sea of Okhotsk. Cold Reg Sci Technol 42:25–40

    Google Scholar 

  • Shirasawa K, Leppäranta M, Kawamura T, Ishikawa M, Takatsuka T (2006) Measurements and modelling of the water—ice heat flux in natural waters. In: Proc of the 18th IAHR international symposium on ice, Hokkaido University, Sapporo, Japan, pp 85–91. http://www.riverice.ualberta.ca/IAHR%20Proc/. Accessed Aug 2012

  • Shuter BJ, Finstad AG, Helland IP, Zweimüller I, Hölker F (2012) The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change (this issue)

  • Simojoki H (1940) Über die Eisverhältnisse der Binnenseen Finnlands. PhD thesis, University of Helsinki

  • Stefan J (1891) Über die Theorie der Eisbildung, insbesondere über Eisbildung im Polarmeere. Annalen der Physik 3rd Ser 42:269–286

    Google Scholar 

  • Stigebrandt A (1978) Dynamics of an ice covered lake with through-flow. Nordic Hydrol 9:19–244

    Google Scholar 

  • Sturova IV (2007) Effect of ice cover on oscillations of fluid in a closed basin. Izv Atmos Ocean Phys 43(1):112–118. doi:10.1134/S0001433807010136

    Google Scholar 

  • Svensson U, Larsson R (1980) A one-dimensional numerical model study of some basic features of the flow in ice-covered lakes. J Hydraul Res 18:251–267

    Google Scholar 

  • Terzhevik A, Golosov S, Palshin N, Mitrokhov A, Zdorovennov R, Zdorovennova G, Kirillin G, Shipunova E, Zverev I (2009) Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia. Aquat Ecol 43(3):617–627. doi:10.1007/s10452-009-9288-x

    CAS  Google Scholar 

  • Terzhevik AY, Palshin NI, Golosov SD, Zdorovennov RE, Zdorovennova GE, Mitrokhov AV, Potakhin MS, Shipunova EA, Zverev IS (2010) Hydrophysical aspects of oxygen regime formation in a shallow ice-covered lake. Water Resour 37:662–673. doi:10.1134/S0097807810050064

    CAS  Google Scholar 

  • Thomas D, Dieckmann GS (eds) (2009) Sea ice. Wiley, New York

    Google Scholar 

  • Verescagin G (1925) A selection of works from Lake Baikal Expedition. Dokl Acad Sci SSSR 12:161–164 (in Russian)

    Google Scholar 

  • Vincent WF, Layborn-Parry J (2008) Polar lakes and rivers. Limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, NY

    Google Scholar 

  • Wake A, Rumer RR (1983) Great lakes ice dynamics simulation. J Waterway Port Coastal Ocean Eng 109:86–102

    Google Scholar 

  • Walsh SE, Vavrus SJ, Foley JA, Fisher VA, Wynne RH, Lenters JD (1998) Global patterns of lake ice phenology and climate: Model simulations and observations. J Geophys Res 103(D22):28825–28837. doi:10.1029/98JD02275

    Google Scholar 

  • Wang C, Shirasawa K, Leppäranta M, Ishikawa M, Huttunen O, Takatsuka T (2005) Solar radiation and ice heat budget during winter 2002–2003 in Lake Pääjärvi, Finland. Verh Int Verein Limnol 29:414–417

    Google Scholar 

  • Wang K, Leppäranta M, Reinart A (2006) Modeling ice dynamics in Lake Peipsi. Verh Int Verein Limnol 29:1443–1446

    Google Scholar 

  • Wang J, Bai X, Hu H, Clites A, Colton M, Lofgren B (2012) Temporal and spatial variability of great lakes ice cover, 1973–2010*. J Clim 25:1318–1329

    Google Scholar 

  • Weeks WF (1998) Growth conditions and structure and properties of sea ice. In: Leppäranta M (ed) The physics of ice-covered seas, v 1. Helsinki University Press, Helsinki, pp 25–104

    Google Scholar 

  • Weiss RF, Carmack EC, Koropalov VM (1991) Deep-water renewal and biological production in Lake Baikal. Nature 349:665–669. doi:10.1038/349665a0

    CAS  Google Scholar 

  • Welch HE, Bergmann MA (1985) Water circulation in small arctic lakes in winter. Can J Fish Aquat Sci 42:506–520

    Google Scholar 

  • Welch HE, Dillon PJ, Sreedharan A (1976) Factors affecting winter respiration in Ontario lakes. J Fish Res Board Can 33:1809–1815

    Google Scholar 

  • Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412. doi:10.1146/annurev.fluid.35.101101.161220

    Google Scholar 

  • Wüest A, Ravens TM, Granin NG, Kocsis O, Schurter M, Sturm M (2005) Cold intrusions in Lake Baikal: direct observational evidence for deep-water renewal. Limnol Oceanogr 50:184–196

    Google Scholar 

  • Wunsch C (1970) On oceanic boundary mixing. Deep Sea Res Oceanogr Abs 17:293–301. doi:10.1016/0011-7471(70),90022-7

    Google Scholar 

  • Yang Y, Leppäranta M, Cheng B, Li Z et al (2012) Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus A 64:17202. doi:10.3402/tellusa.v64i0.17202

    Google Scholar 

  • Zdorovennova G (2009) Spatial and temporal variations of the water-sediment thermal structure in shallow ice-covered Lake Vendyurskoe (Northwestern Russia). Aquat Ecol 43:629–639. doi:10.1007/s10452-009-9277-0

    CAS  Google Scholar 

  • Zdorovennov RE, Zdorovennova GE, Palshin NI, Terzhevik AY (2011) Variation of thermal and oxygen regimes in shallow lake in winter. Transactions of KRC of RAS 4:57–63 (in Russian)

    Google Scholar 

  • Zeikus JG, Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107

    PubMed  CAS  Google Scholar 

  • Zhdanov AA, Granin NG, Shimaraev MN (2001) The generation mechanism of under-ice currents in Lake Baikal. Dokl Earth Sci 377A:329–332

    Google Scholar 

  • Zilitinkevich SS (ed) (1991) Modeling air–lake interaction: physical background. Springer, Berlin

    Google Scholar 

  • Zubov NN (1945) L’dy Arktiki. Izdatelstvo Glavsevmorputi, Moscow (in Russian). English translation: Zubov NN. (1963) Arctic Ice. Naval Oceanographic Office. Washington DC, USA. http://openlibrary.org/books/OL5931644M/Arctic_ice. Accessed Aug 2012

  • Zyryanov VN (2011) Under-ice seiches. Water Resour 38:261–273. doi:10.1134/S0097807811020163

    CAS  Google Scholar 

Download references

Acknowledgments

We thank organizers and participants of the two Winter Limnology Symposia, which were held in 2008 in Kilpisjärvi and in 2010 in Liebenberg and served as the starting point for this review. Comments of Prof. Dr. Alfred Wüest and three anonymous referees have helped to improve this review and are gratefully acknowledged. The photograph of ice-covered Lake Stechlin was kindly provided by Thomas Gonsiorczyk (IGB). The work was partially supported by the following research projects: DFG KI-853-5/1 (German Research Foundation), 140939 (Academy of Finland), RFBR-10-05-91331-DFG (Russian Fund of Basic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiy Kirillin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillin, G., Leppäranta, M., Terzhevik, A. et al. Physics of seasonally ice-covered lakes: a review. Aquat Sci 74, 659–682 (2012). https://doi.org/10.1007/s00027-012-0279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-012-0279-y

Keywords

Navigation