Skip to main content
Log in

Effectiveness of different types of block ramps for fish upstream movement

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Rivers are worldwide highly fragmented due to human impacts. This fragmentation has a negative effect on fish movement and dispersal. Many artificial barriers such as river bed sills and small weirs are nowadays replaced by block ramps in order to reestablish longitudinal connectivity for fish in rivers and streams. We studied the upstream passage of several fish species on different types of block ramps with slopes between 3.6 and 13.4 %. We conducted translocation experiments in the field based on mark-recapture and on the use of PIT-tags. Temporal movement patterns were observed by an instream antenna. Hydraulic and morphological characteristics of block ramps were measured and compared with fish passage efficiency. Our results clearly showed that upstream passage efficiency differs between fish species, size classes and block ramps. We observed that brown trout (Salmo trutta fario) performed better than bullhead (Cottus gobio) and several cyprinid species on the same block ramps. Passage efficiency of brown trout and chub (Leuciscus cephalus) was size-selective, with small-sized individuals being less successful. For brown trout, size-selectivity became more relevant with increasing slope of ramp. We conclude that block ramps with slopes of >5 % are ineffective for the small-sized cyprinid species and that vertical drops within step-pool ramps can hinder successful upstream passage of bullhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • DVWK (Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.) (1996) Fischaufstiegsanlagen-Bemessung, Gestaltung, Funktionskontrolle. Merkblätter zur Wasserwirtschaft 232, Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn

  • Armstrong JD, Herbert NA (1997) Homing movements of displaced stream-dwelling brown trout. J Fish Biol 50(2):445–449

    Article  Google Scholar 

  • Blanchet S, Rey O, Etienne R, Lek S, Loot G (2010) Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl 3(3):291–304

    Article  Google Scholar 

  • Bless R (1990) Die Bedeutung von gewässerbaulichen Hindernissen im Raum-Zeit-System der Groppe (Cottus gobio L.). Natur und Landschaft 65(12):581–585

    Google Scholar 

  • Breitenstein M, Kirchhofer A (1999) Biologie, Gefährdung und Schutz des Schneiders (Alburnoides bipunctatus) in der Schweiz. Mitteilungen zur Fischerei Nr. 62, Bundesamt für Umwelt, Wald und Landschaft BUWAL, Bern

  • Friedrich H, Kolf R, Pawlowski S (2005) Handbuch Querbauwerke. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Düsseldorf

  • Geeraerts C, Ovidio M, Verbiest H, Buysse D, Coeck J, Belpaire C, Philippart JC (2007) Mobility of individual roach Rutilus rutilus (L.) in three weir-fragmented Belgian rivers. Hydrobiologia 582:143–153

    Article  Google Scholar 

  • Gerking SD (1959) The restricted movement of fish populations. Biol Rev 34(2):221–242

    Article  Google Scholar 

  • Hammer C (1995) Fatigue and exercise tests with fish. Comp Biochem Physiol 112(1):1–20

    Article  Google Scholar 

  • Haro A, Castro-Santos T, Noreika J, Odeh M (2004) Swimming performance of upstream migrant fishes in open-channel flow: a new approach to predicting passage through velocity barriers. Can J Fish Aquat Sci 61(9):1590–1601

    Article  Google Scholar 

  • Holthe E, Lund E, Finstad B, Thorstad EB, McKinley RS (2005) A fish selective obstacle to prevent dispersion of an unwanted fish species, based on leaping capabilities. Fisheries Manag Ecol 12(2):143–147

    Article  Google Scholar 

  • Huet M (1959) Profiles and biology of Western European streams as related to fish management. Trans Am Fish Soc 88(3):155–163

    Article  Google Scholar 

  • Huntingford FA, Braithwaite VA, Armstrong JD, Aird D, Joiner P (1998) Homing in juvenile salmon in response to imposed and spontaneous displacement: experiments in an artificial stream. J Fish Biol 53(4):847–852

    Article  Google Scholar 

  • Jungwirth M (1998) River continuum and fish migration- going beyond the longitudinal river corridor in understanding ecological integrity. In: Jungwirth et al (ed) Fish migration and fish bypasses. Fishing News Books, Oxford, pp 19–32

  • Kennedy GJA, Pitcher TJ (1975) Experiments on homing in shoals of European Minnow, PhoxinusPhoxinus (L). Trans Am Fish Soc 104(3):454–457

    Article  Google Scholar 

  • Khan MT, Khan TA, Wilson ME (2004) Habitat use and movement of river blackfish (Gadopsis marmoratus R.) in a highly modified Victorian stream, Australia. Ecol Freshw Fish 13:285–293

    Article  Google Scholar 

  • Knaepkens G, Baekelandt K, Eens M (2006) Fish pass effectiveness for bullhead (Cottus gobio), perch (Perca fluviatilis) and roach (Rutilus rutilus) in a regulated lowland river. Ecol Freshw Fish 15(1):20–29

    Article  Google Scholar 

  • Kulíšková P, Horký P, Slavík O, Jones JI (2009) Factors influencing movement behaviour and home range size in ide Leuciscus idus. J Fish Biol 74(6):1269–1279

    Article  PubMed  Google Scholar 

  • Laine A, Jokivirta T, Katopodis C (2002) Atlantic salmon, Salmo sara L., and sea trout, Salmo trutta L., passage in a regulated northern river—fishway efficiency, fish entrance and environmental factors. Fish Manag Ecol 9(2):65–77

    Article  Google Scholar 

  • Lange D (2007) Blockrampen- ökologische Bauwerke zur Sohlenstabilisierung. In: Minor H-E (ed) Blockrampen: Anforderungen und Bauweisen. ETH Zürich, Zürich, pp 5–21

    Google Scholar 

  • Northcote TG (1998) Migratory behaviour of fish and its significance to movement through riverine fish passage facilities. In: Jungwirth et al (ed) Fish migration and fish bypasses. Fishing News Books, Oxford, pp 3–18

  • Ovidio M, Philippart JC (2002) The impact of small physical obstacles on upstream movements of six species of fish—synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia 483(1–3):55–69

    Article  Google Scholar 

  • Ovidio M, Capra H, Philippart JC (2007) Field protocol for assessing small obstacles to migration of brown trout Salmo trutta, and European grayling Thymallus thymallus: a contribution to the management of free movement in rivers. Fish Manag Ecol 14:41–50

    Article  Google Scholar 

  • Pagliara S, Chiavaccini P (2006) Energy dissipation on block ramps. J Hydraul Eng 132(1):41–48

    Article  Google Scholar 

  • Peter A (1998) Interruption of the river continuum by barriers and the consequences for migratory fish. In: Jungwirth et al (ed) Fish migration and fish bypasses. Fishing News Books, Oxford, pp 99–112

  • Quintella BR, Andrade NO, Koed A, Almeida PR (2004) Behavioural patterns of sea lampreys’ spawning migration through difficult passage areas, studied by electromyogram telemetry. J Fish Biol 65(4):961–972

    Article  Google Scholar 

  • Sheer MB, Steel EA (2006) Lost watersheds: barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and Lower Columbia River basins. Trans Am Fish Soc 135(6):1654–1669

    Article  Google Scholar 

  • Studer M, Schleiss A (2011) Analyse von Fliessgeschwindigkeiten und Abflusstiefen auf verschiedenen Typen von Blockrampen. WasserWirtschaft 101(1–2):67–71

    Article  Google Scholar 

  • Tamagni S, Weitbrecht V, Boes R (2010) Design of unstructured block ramps: a state-of-the-art review. In: Dittrich A, Koll K, Aberle J, Geisenhainer P (eds) River Flow 2010 Proceedings of the International Conference on Fluvial Hydraulics. Bundesanstalt für Wasserbau, Karlsruhe, pp 729–736

    Google Scholar 

  • Utzinger J, Roth C, Peter A (1998) Effects of environmental parameters on the distribution of bullhead Cottus gobio with particular consideration of the effects of obstructions. J Appl Ecol 35:882–892

    Article  Google Scholar 

  • Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conserv Genet 5(4):529–538

    Article  CAS  Google Scholar 

  • Zeh Weissmann H, Könitzer C, Bertiller A (2009) Strukturen der Fliessgewässer in der Schweiz. Zustand von Sohle, Ufer und Umland (Ökomorphologie); Ergebnisse der ökomorphologischen Kartierung. Umwelt-Zustand Nr. 0926, Bundesamt für Umwelt, Bern

Download references

Acknowledgments

We thank B. Germann-Arnold and other numerous helpers for their assistance in the field. We further thank M. Studer and A. Schleiss who helped to conduct or plan the hydraulic and morphologic measurements. The manuscript greatly benefitted from the comments of S. Angelone and O. Seehausen. We acknowledge two anonymous reviewers for their valuable comments and suggestions. The present study was part of the interdisciplinary project “Integrated River Management” and was financed by the Swiss Federal Office for the Environment (FOEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Weibel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weibel, D., Peter, A. Effectiveness of different types of block ramps for fish upstream movement. Aquat Sci 75, 251–260 (2013). https://doi.org/10.1007/s00027-012-0270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-012-0270-7

Keywords

Navigation