Actual state of European wetlands and their possible future in the context of global climate change

Abstract

The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    This is true, e.g., for Coleanthus subtilis (Tratt.) Seidl, a tiny (3–11 cm tall) annual grass that occurs on the bare or almost bare soils of emerged lake or pond bottoms and shores after its dormant caryopses have survived a long-term flooding of the biotope. The life cycle of the shoots of this grass lasts only 4–6 weeks, and the plants usually flower and fruit in June and July. The reproduction and hence also survival of C. subtilis at each particular site of its occurrence is ensured by a periodical drawdown of the water table at that time of year. One plant can produce over 1,000 ripe caryopses. In Europe, its geographical range of occurrence is narrow, covering only Central Europe and within it especially the basin of Třeboň and adjacent areas in the Czech Republic and Lower Austria. C. subtilis has thus become one of the 434 plant species protected within the EU “Natura 2000” framework (Habitat Directive 92/43, Annex 2). It is also listed in the Red List of threatened plants of the Czech Republic and in the IUCN list of threatened plants. The central area of its European occurrence lacks natural lakes, but is rich in artificial fishponds where the water table can be set at a certain level at any time. For securing permanent occurrence of C. subtilis within this area, agreements have therefore to be made with fishpond owners as to the occasional maintenance of a low water table in the respective fishponds at the optimum of this species’ seasonal development. Such an arrangement can result in a certain loss of the fish crop in a fishpond whose water area is temporarily diminished by the drawdown (summer drainage is not any more a regular part of the fishpond management in Central Europe), and provisions have to be made for a financial compensation of this loss. Obtaining of reliable data on the occurrence of C. subtilis on a certain territory thus requires a period as long as several years. It is advantageous that the protection of C. subtilis at any site brings with itself the protection of the whole rather rare plant community colonizing the emerged pond bottom or shore. For a thorough treatment of the biology and ecology of C. subtilis see, e.g., Hejný (1969).

  2. 2.

    Let us consider an herbaceous wetland that evaporates 6 l of water per 1 m2 during a summer day. The solar energy consumed in evapotranspiration of 6 l is equal to 4.2 kW (latent heat of 1 l of water = 0.7 kW, or 2.45 MJ). This amount of energy represents an average 24-h flux of about 180 W m−2. Expressed per an area of 5 km2, the latent heat flux equals 900 MW, which is equivalent to the power output of a large electric power station.

References

  1. Adam P (1990) Saltmarsh ecology. Cambridge University Press, Cambridge

    Google Scholar 

  2. Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol Annu Rev 45:345–405

    Google Scholar 

  3. Alm J, Schulman L, Walden J, Nykänen H, Martikainen PJ, Silvola J (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–174

    Article  Google Scholar 

  4. Anderson J (2008) Climate change induced water stress and its impact on natural and managed ecosystems. European Parliament-Policy Department Economic and Scientific Policy, IP/A/ENVI/FWC/2006-172/LOTI/C1SC12

  5. Anonymous (2003) Information sheet on Ramsar wetlands. Wolderwijd en Nuldernauw. Available at: http://www.wetlands.org/reports/ris/3NL042en.pdf. Accessed 18 Aug 2011

  6. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67:9–26

    Article  Google Scholar 

  7. Arnfield AJ (2003) Two decades of urbane climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  8. Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subartic fen. Geophys Res Lett 31:L16119

    Article  CAS  Google Scholar 

  9. Aurela M, Ruitta T, Laurila T, Tuovinen J-P, Vesala T, Tuittila ES, Rinne J, Haapanala S, Laine J (2007) CO2 exchange of a sedge fen in souther Finland—the impact of a drought period. Tellus 59B:826–837

    CAS  Google Scholar 

  10. Bloesch J (2004) Sedimentation and lake sediment formation. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook, vol 1. Limnology and limnetic ecology. Blackwell, Malden, pp 197–229

    Google Scholar 

  11. Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) (2006) Wetlands: functioning, biodiversity conservation, and restoration. Springer, Berlin

    Google Scholar 

  12. Boer MM, de Groot RS (eds) (1990) Landscape-ecological impacts of climatic change. IOS Press, Amsterdam, p 429

    Google Scholar 

  13. Bragg OM, Lindsay R, Risager M, Silvius M, Zingstra H (ed) (2003) Strategy and action plan for mire and peatland conservation in Central Europe, Central European Peatland Project (CEPP). Wetlands International Publ.18, Ede

  14. Britton RH, Crivelli AJ (1993) Wetlands of southern Europe and North Africa: Mediterranean wetlands. In: Whigham DF, Dykyjová D, Hejný S (eds) Wetlands of the World I. Kluwer, Dordrecht, pp 129–194

    Google Scholar 

  15. Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat Bot 69:313–324

    CAS  Article  Google Scholar 

  16. Brom J, Pokorný J (2009) Temperature and humidity characteristics of two willow stands, a peaty meadow and a drained pasture and their impact on landscape functioning. Boreal Env Res 14:389–403

    Google Scholar 

  17. Cabezas A, Comín FA, Walling DE (2009) Changing pattens of organic carbon and nitrogen accretion on the middle Ebro floodplain (NE Spain). Ecol Eng 35:1547–1558

    Article  Google Scholar 

  18. Charman DJ (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  19. Christensen JH, Hewitson B (2007) Regional climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  20. Comín FA, Alonso M (1988) Spanish salt lakes, their chemistry and biota. Hydrobiol 159:237–245

    Article  Google Scholar 

  21. Comín FA, Williams WD (1993) Parched continents: our common future? In: Margalef R (ed) Limnology now. A paradigm of planetary problems. Elsevier, Dordrecht, pp 473–527

    Google Scholar 

  22. Comín FA, Julia R, Comín MP (1991) Fluctuations: the key aspect for the ecological interpretation of saline lake ecosystems. Oecol Aquat 10:127–135

    Google Scholar 

  23. Comín FA, Calvo A, González M, Sorando R, Gallardo B, Cabezas A, Garcaía M, González E (2008) If flooding is the answer, what is the question? In: Gumiero B, Rinaldi M, Fokkens B (eds) River restoration 2008. CIRF, Venice, pp 513–518

    Google Scholar 

  24. Costanza R, Farber SC, Maxwell J (1989) The valuation and management of wetland ecosystems. Ecol Econ 1:335–361

    Article  Google Scholar 

  25. Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg H, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Article  Google Scholar 

  26. Cowardin LM, Golet FC (1995) US Fish and Wildlife Service 1979 wetland classification: a review. Vegetation 118:139–152

    Article  Google Scholar 

  27. Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, Cambridge

    Google Scholar 

  28. Denman KL, Brasseur G (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–588

    Google Scholar 

  29. Doody JP (2004) Coastal squeeze: a historical perspective. J Coast Conserv 10:138

    Article  Google Scholar 

  30. Duever MJ (1990) Hydrology. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 61–89

    Google Scholar 

  31. Dušek J, Čížková H, Czerný R, Taufarová K, Šmídová M, Janouš D (2009) Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agric For Meteorol 149:1524–1530

    Article  Google Scholar 

  32. Dykyjová D, Květ J (eds) (1978) Pond littoral ecosystems. Structure and functioning. Ecological studies, vol 28. Springer, Berlin

    Google Scholar 

  33. Eiseltová M (ed) (1994) Restoration of lake ecosystems. IWRB Publ 32:1–182. International Waterfowl and Wetlands Research Bureau, Slimbridge

  34. Eiseltová M, Biggs J (1995) Restoration of stream ecosystems, IWRB Publ 37:1–170. International Waterfowl and Wetlands Research Bureau, Slimbridge

    Google Scholar 

  35. European Commission (1999) Interpretation manual of European Commission habitats. EUR/5, 2nd edn. European Commission, Brussels

  36. Farrel CA, Doyle GJ (2003) Rehabilitation of industrial cutaway Atlantic blanket bog in County Mayo, North-West Ireland. Wetl Ecol Manag 11:21–35

    Article  Google Scholar 

  37. Finlayson CM, D’Cruz R, Davidson N (eds) (2005) Millenium ecosystem assessment. Ecosystems and human well-being: wetlands and water. Synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  38. Fustec É, Lefeuvre JC (2000) Fonctions et valeurs des zones humides. Dunod, Paris, p 426

    Google Scholar 

  39. Gilman K (1994) Cors Erddreiniog, Anglesey: a case study of wetland conservation (North Wales). In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 2. Case studies. SPB Academic Publishing, The Hague, pp 439–456

    Google Scholar 

  40. Gopal B, Masing V (1990) Biology and ecology. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 91–239

    Google Scholar 

  41. Gopal B, Květ J, Löffler H, Masing V, Patten B (1990) Definition and classification. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 9–15

    Google Scholar 

  42. Gopal B, Hillbricht-Ilkowska A, Wetzel RG (eds) (1993) Wetlands and ecotones: studies on land–water interactions. National Institute of Ecology and International Scientific Publications, New Delhi

    Google Scholar 

  43. Gopal B, Junk WJ, Davis JA (2000) Biodiversity in wetlands: assessment, function and conservation, vol 1. Backhuys Publishers, Leiden

    Google Scholar 

  44. Gopal B, Junk WJ, Davis JA (2001) Biodiversity in wetlands: assessment, function and conservation, vol 2. Backhuys Publishers, Leiden

    Google Scholar 

  45. Gore AJP (ed) (1983a) Ecosystems of the world 4A. Mires: swamp, bog, fen, and moor. General studies. Elsevier, Amsterdam

    Google Scholar 

  46. Gore AJP (ed) (1983b) Ecosystems of the world 4A. Mires: swamp, bog, fen, and moor. Regional studies. Elsevier, Amsterdam

    Google Scholar 

  47. Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetl Ecol Manag 11:109–119

    CAS  Article  Google Scholar 

  48. Haslam SM (2008) The riverscape and the river. Cambridge University Press, Cambridge

    Google Scholar 

  49. Haslam SM, Klötzli F, Sukopp H, Szczepański A (1998) The management of wetlands. In: Westlake DF, Květ J, Szczepański A (eds) The production ecology of wetlands. Cambridge University Press, Cambridge, pp 405–464

    Google Scholar 

  50. Hejný S (1957) Ein Beitrag zur ökologischen Gliederung der Makrophyten der tschechoslowakischen Niederungsgewässer. Preslia 29:349–368

    Google Scholar 

  51. Hejný S (1960) Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen (Donau- und Theissgebiet). Vydavateĺstvo SAV, Bratislava

    Google Scholar 

  52. Hejný S (1969) Coleanthus subtilis (Tratt.) Seidl in der Tschechoslowakei. Folia Geobot Phytotax 4:345–399

    Google Scholar 

  53. Hejný S (1971) The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiol Bucuresti 12:71–85

    Google Scholar 

  54. Hejný S, Husák Š (1978) Higher plant communities. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems. Structure and functioning. Ecological studies, vol 28. Springer, Berlin, pp 23–64

    Google Scholar 

  55. Hejný S, Segal S, Raspopov IM (1998) General ecology of wetlands. In: Westlake DF, Květ J, Szczepański A (eds) The production ecology of wetlands. Cambridge University Press, Cambridge, pp 1–77

    Google Scholar 

  56. Hejný S, Hroudová Z, Květ J (2002) Fishpond vegetation: an historical view. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco/Parthenon Publishing Group, Paris/Boca Raton, pp 63–95

  57. Hendriks DMD, Van Huissteden J, Dolman AJ, Van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeoscience 4:411–424

    CAS  Article  Google Scholar 

  58. Hesslerová P, Pokorný J (2010) The synergy of solar radiation, plant biomass and humidity as an indicator of ecological functions of the landscape: a case study from Central Europe. Integr Env Assess Monit 6:249–259

    Google Scholar 

  59. Hillbricht-Ilkowska A, Pieczyńska E (eds) (1993) Nutrient dynamics and retention in land/water ecotones of lowland, temperate lakes and rivers. Developments in Hydrobiology, vol 82. Kluwer, Dordrecht

    Google Scholar 

  60. Hofstede JLA (2003) Integrated management of artificially created salt marshes in the Wadden See of Schleswig-Holstein, Germany. Wetl Ecol Manag 11:183–194

    Article  Google Scholar 

  61. Holland MM, Risser PG, Naiman RJ (eds) (1991) Ecotones. Chapman and Hall, New York

    Google Scholar 

  62. Hroudová Z (1981) Seasonal vegetation dynamics on emerged pond bottom. Sborník Jihočeského muzea v Českých Budějovicích. Přírodní vědy 21:37–49 (in Czech with English summary)

    Google Scholar 

  63. Jaatinen K, Laiho R, Vuorenmaa A, del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H (2008) Responses of aerobic microbial communities and soil respiration to water level drawdown in a northern boreal fen. Environ Microbiol 10:339–353

    PubMed  CAS  Article  Google Scholar 

  64. Janda J, Ševčík J (2002) Avifauna of the Třeboň fishponds and new wetlands. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco/Parthenon Publishing Group, Paris/Boca Raton, pp 475–480

    Google Scholar 

  65. Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs G-, Smith P, Valentini R, Schulze ED (2005) The carbon budget of terrestrial ecosystems at country-scale—a European case study. Biogeoscience 2:15–26

    CAS  Article  Google Scholar 

  66. Jeglum JK, Hooijer A (2006) The biology of peatlands. Oxford University Press, Oxford

    Google Scholar 

  67. Jeník J, Hátle M, Hlásek J (2002) Preservation of ecological and socio-economic roles of human-managed wetlands. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco/Parthenon Publishing Group, Paris/Boca Raton, pp 481–486

    Google Scholar 

  68. Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Jyväskyla

  69. Jörgensen SE, Löffler H (eds) (1990) Guidelines of lake management, vol 3. International Lake Environment Committee, UN Environment Programme, Otsu

    Google Scholar 

  70. Junk WJ, Welcomme RL (1990) Floodplains. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 491–524

    Google Scholar 

  71. Kaki T, Ojala A, Kankaala P (2001) Diel variation in CH4 emissions from stands of Phragmites australis (Cav.) Trin. Ex Steud. and Typha latifolia L. in a boreal lake. Aquat Bot 71:259–271

    CAS  Article  Google Scholar 

  72. Kankaala P, Makela S, Bergstrom I, Huitu E, Kaki T, Ojala A, Rantakari M, Kortelainen P, Arvola L (2003) Midsummer spatial variation in CH4 efflux from stands of littoral vegetation in a boreal meso-eutrophic lake. Freshw Biol 48:1617–1629

    Article  Google Scholar 

  73. Kankaala P, Ojala A, Kaki T (2004) Temporal and spatial variation in methane emission from a flooded transgression shore of boreal lake. Biogeochemistry 68:297–311

    CAS  Article  Google Scholar 

  74. Keddy PA (2000) Wetland ecology. Cambridge University Press, Cambridge

    Google Scholar 

  75. Kolmanová A, Rektoris L, Přibáň K (1999) Retention ability of pine peat bog ecosystem and its response to downpour precipitation. In: Vymazal J (ed) Nutrient cycling and retention in natural and constructed wetlands. Backhuys Publishers, Leiden, pp 177–182

    Google Scholar 

  76. Kořínek V, Fott J, Fuksa J, Lellák J, Pražáková M (1987) Carp ponds of Central Europe. In: Michael RG (ed) Managed aquatic ecosystems. Ecosystems of the world, vol 29. Elsevier, Amsterdam, pp 29–62

    Google Scholar 

  77. Kravčík M, Pokorný J, Kohutiar J, Kováč M, Tóth E (2008) Water for the recovery of the climate—a new water paradigm. Available at: http://www.waterparadigm.org/indexen.php?web=./home/homeen.html. Accessed 18 Aug 2011

  78. Kubů F, Květ J, Hejný S (1994) Fishpond management in Czechoslovakia. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 2: case studies. SPB Academic Publishing, The Hague, pp 391–404

    Google Scholar 

  79. Květ J, Jeník J, Soukupová L (eds) (2002) Freshwater wetlands and their sustainable future, a case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the Biosphere Series, vol 28. UNESCO/Parthenon Publishing Group, Paris/Boca Raton

    Google Scholar 

  80. Lachavanne JB, Juge R (ed) (1997) Biodiversity in land-inland water ecotones. Man and the biosphere series 18, I–XVIII and 1–308. UNESCO/Parthenon Publishing Group, Paris/Carnforth

  81. Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cycles 17(2):1053. doi:10.1029/2002GB002015

    Article  CAS  Google Scholar 

  82. Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  83. Laitinen J, Kukko-Oja K, Huttunen A (2008) Stability of the water regime forms a vegetation gradient in minerotrophic mire expanse vegetation of a boreal aapa mire. Ann Bot Fenn 45:342–358

    Article  Google Scholar 

  84. Lappalainen E (ed) (1996) Global peat resources. International Peat Society and Geological Survey of Finland, Espoo

    Google Scholar 

  85. LeMer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    CAS  Article  Google Scholar 

  86. Lhotský R (2006) Retenční funkce Třeboňské rybniční soustavy (Retention function of the Trebon fishpond system, in Czech). Vodní hospodářství 56:410–418

    Google Scholar 

  87. Lieffers VJ (1988) Sphagnum and cellulose decomposition in drained and natural areas of an Alberta peatland. Can J Soil Sci 68:755–761

    CAS  Article  Google Scholar 

  88. Löffle H, Gunatilaka A (1994) The shallow lake and reed (Phragmites australis) wetland of Neusiedlersee (Austria). In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 2. Case studies. SPB Academic Publishing, The Hague, pp 183–202

    Google Scholar 

  89. Löffler H (1974) Der Neusiedlersee. Naturgeschichte eines Steppensees. Verlag Fritz Molden, Wien

    Google Scholar 

  90. Löffler H (1982) Der Seewinkel. Die fast verlorene Landschaft. Verlag Niederösterreichisches Pressehaus, St.Pölten

    Google Scholar 

  91. Löffler H (1990) Human uses. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 17–27

    Google Scholar 

  92. Lowe AJ, Howard T, Pardaens A, Tinker J, Jenkins G, Jeff Ridley J, Leake J, Holt J, Wakelin S, Wolf J, Horsburgh K, Reeder T, Milne G, Bradley S, Dye S (2009) Online marine and coastal projections. Available at: http://ukclimateprojections.defra.gov.uk/content/view/825/518. Accessed 18 Aug 2011

  93. MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  94. Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63:254–272

    Article  Google Scholar 

  95. Meehl G, Stocker TF (2007) Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–846

    Google Scholar 

  96. Middleton B (ed) (2002) Flood pulsing in wetlands. Wiley, New York

    Google Scholar 

  97. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  98. Moore PD (ed) (1984) European mires. Academic Press, London

    Google Scholar 

  99. Moore PD, Bellamy DJ (1974) Peatlands. Elek Science, London

    Google Scholar 

  100. Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36

    Article  Google Scholar 

  101. Naiman RJ, Décamps H (1990) The ecology and management of aquatic-terrestrial ecotones. Man and the biosphere series, vol 4. UNESCO/Parthenon Publishing Group, Paris/Carnforth

    Google Scholar 

  102. Nivet C, Frazier S (2004) A review of European wetland inventory. Wetlands International and the Dutch Institute for Inland Water Management and Waste Water Treatment (RIZA). Available at: http://www.wetlands.org/RSIS/WKBASE/pewi/intro.htm. Accessed 18 Aug 2011

  103. O’Sullivan PE, Reynolds CS (eds) (2004) The lakes handbook, vol 1. Limnology and limnetic ecology. Blackwell, Malden

    Google Scholar 

  104. O’Sullivan PE, Reynolds CS (eds) (2005) The lakes handbook, vol 2. Lake restoration and rehabilitation. Blackwell, Malden

    Google Scholar 

  105. Orme AR (1990) Wetland morphology, hydrodynamics and sedimantation. In: Williams M (ed) Wetlands. A threatened landscape. Basil Blackwell, Oxford, pp 42–94

    Google Scholar 

  106. Paavilainen E, Päivänen J (1995) Peatland forestry: ecology and principles. Ecological Studies, vol 111. Springer, Berlin

    Google Scholar 

  107. Patten BC (ed) (1990) Wetlands and shallow continental water bodies, vol 1: natural and human relationships. SPB Academic Publishing, The Hague

    Google Scholar 

  108. Patten BC (ed) (1994) Wetlands and shallow continental water bodies, vol 2: case studies. SPB Academic Publishing, The Hague

    Google Scholar 

  109. Pechar L, Hrbáček J, Pithart D, Dvořák J (1996) Ecology of pools in the floodplain. In: Prach K, Jeník J, Large ARG (eds) Floodplain ecology and management. SPB Academic Publishing BV, Amsterdam, pp 209–226

    Google Scholar 

  110. Pechar L, Přikryl I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds since the end of the nineteenth century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the biosphere series, vol 28. UNESCO/Parthenon Publishing Group, Paris/Boca Raton, pp 31–61

    Google Scholar 

  111. Penka M, Vyskot M, Klimo E, Vašíček F (1985) Floodplain forest ecosystem I. Before management measures. Academia, Praha

    Google Scholar 

  112. Penka M, Vyskot M, Klimo E, Vašíček F (1991) Floodplain forest ecosystem II. After management measures. Academia, Praha

    Google Scholar 

  113. Phillips GL (2005) Eutrophication of shallow lakes. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook, vol 2. Lake restoration and rehabiltation. Blackwell, Malden, pp 261–278

    Google Scholar 

  114. Picek T, Čížková H, Dušek J (2007) Greenhouse gas emissions from a constructed wetland—plants as important source of carbon. Ecol Eng 27:153–165

    Google Scholar 

  115. Pithart D, Křováková K, Dušek J, Žaloudík J (2008) Case study: ecosystem services of a floodplain with a preserved hydrological regime, Czech Republic. In: Saalismaa N et al (eds) The role of environmental management and eco-engineering in disaster risk reduction and climate change adaptation. Pro Act Network, Geneva, pp 34–36

    Google Scholar 

  116. Pokorný J (2001) Dissipation of solar energy in landscape—controlled by management of water and vegetation. Renew Energy 24:641–645

    Article  Google Scholar 

  117. Prach K, Jeník J, Large ARG (eds) (1996) Floodplain ecology and management. SPB Academic Publishing BV, Amsterdam

    Google Scholar 

  118. Prach K, Pithart D, Francírková T (ed) (2003) Ekologické funkce hospodaření v říčních nivách (Ecological functions of floodplain management, in Czech). Institute of Botany, Czech Academy of Sciences, Třeboň

  119. Procházka J, Brom J, Pechar L (2009) The comparison of water and matter flows in three small catchments in the Šumava mts. Soil Water Res 4(2):75–82

    Google Scholar 

  120. Pruett L, Cimino J (2000) Global Maritime Boundaries Database (GMBD). Veridian-MRJ Technology Solutions, Fairfax. Available at: http://earthtrends.wri.org/text/coastal-marine/variable-61.html. Accessed 18 Oct 2011

  121. Purseglove J (1988) Taming the flood. Oxford University Press, Oxford, p 307

    Google Scholar 

  122. Rajchard J, Fridrichovský V, Křiváčková O, Navrátilová J (2008) Colonization of waterbirds of artificial lakes after surface mining: a case study. Acta Zool Sin 54:602–614

    Google Scholar 

  123. Ranwell DS (1972) Ecology of salt marshes and sand dunes. Chapman and Hall, London

    Google Scholar 

  124. Rejmánek M, Velásquez J (1978) Communities of emerged fishpond shores and bottoms. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems. Structure and functioning. Ecological studies, vol 28. Springer, Berlin, pp 206–211

    Google Scholar 

  125. Rinne J, Ruita T, Philatie M, Aurela M, Haapanala S, Tuovinen JP, Tuitilla ES (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59B:449–457

    CAS  Google Scholar 

  126. Ripl W (2003) Water: the bloodstream of the biosphere. Phil Trans R Soc B 358:1921–1934

    PubMed  Article  Google Scholar 

  127. Rodewald-Rudescu L (1974) Das Schilfrohr. Die Binnengewässer, vol 27. Schweizerbart’scher Verlag, Stuttgart

    Google Scholar 

  128. Rodo XE (2003) Interactions between the tropics and the extratropics. In: Rodo XE, Comín FA (eds) Global climate: current uncertainties and research in the climate system. Springer, Heidelberg, pp 237–274

    Google Scholar 

  129. Rodo XE, Baert E, Comin FA (1997) Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Climatol Dyn 13:275–284

    Article  Google Scholar 

  130. Ruhl JB, Kraft SE, Lant CL (2007) The law and policy of ecosystem services. Island Press, Washington, DC

    Google Scholar 

  131. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, Oxford

    Google Scholar 

  132. Schreader CP, Rouse WR, Griffis TJ, Boudreau LD, Blanken PD (1998) Carbon dioxide fluxes in a northern fen during a hot, dry summer. Glob Biogeochem Cycles 12:729–740

    CAS  Article  Google Scholar 

  133. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    CAS  Article  Google Scholar 

  134. Seják J et al (2003) Hodnocení a oceňování biotopů České republiky (Assessment and valuation of biotopes of the Czech Republic, in Czech). Český ekologický ústav, Praha

  135. Sliva J, Pfadenhauer J (1999) Restoration of cut-over raised bogs in southern Germany—a comparison of methods. Appl Veg Sci 2:137–148

    Article  Google Scholar 

  136. Straškraba M (1963) Share of the littoral vegetation in the productivity of two fishponds in Southern Bohemia. Rozpravy Čs. Akademie Věd, Řada Mat Přír Věd 73(13):1–64

  137. Straškraba M (1968) Der Anteil der höheren Pflanzen an der Produktion der stehenden Gewässer. Mitt Intern Ver Theor Angew Limnol 14:212–230

    Google Scholar 

  138. Straškraba M, Kořínková J, Poštolková M (1967) Contribution to the productivity of the littoral region of ponds and pools. Rozpravy Čs. Akademie Věd, Řada Mat Přír Věd 77(11):1–80

    Google Scholar 

  139. Šumberová K, Horáková V, Lososová Z (2005) Vegetation dynamics on exposed pond bottoms in the Českobudějovický basin (Czech Republic). Phytocoenologia 35:421–448

    Article  Google Scholar 

  140. Šumberová K, Lososová Z, Fabšičová M, Horáková V (2006) Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia 78:235–252

    Google Scholar 

  141. Šusta J (1898) Fünf Jahrhunderte der Teichwirtschaft in Wittingau. Herrcke u. Lebeling, Stettin

  142. Turner RK, Georgiou S, Fisher B (2008) Valuing ecosystem services. The case of multi-functional wetlands. Earthscan, London

    Google Scholar 

  143. Vasander H (1982) Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Ann Bot Fenn 19:103–125

    Google Scholar 

  144. Vasander H, Laiho R, Laine J (1997) Changes in species diversity in peatlands drained for forestry. In: Trettin CC, Jurgensen MF, Grigal DF, Gale MR, Jeglum JK (eds) Northern Forested Wetlands: ecology and management. CRC Press/Lewis Publishers, Boca Raton, pp 109–119

    Google Scholar 

  145. Vasander H, Tuittila ES, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen ML, Laine J (2003) Status and restoration of peatlands in Northern Europe. Wetl Ecol Manag 11:51–63

    CAS  Article  Google Scholar 

  146. Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (2006) Wetlands and natural resource management. Ecological studies, vol 190. Springer, Berlin

    Google Scholar 

  147. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  148. Vymazal J (1995) Algae and element cycling in wetlands. Lewis Publishers, Boca Raton

    Google Scholar 

  149. Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) (1998) Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, Leiden

    Google Scholar 

  150. Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ü (2006) Constructed wetlands for wastewater treatment. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and natural resource management. Ecological studies, vol 190. Springer, Berlin, pp 69–96

    Google Scholar 

  151. Westlake DF, Květ J, Szczepański A (eds) (1998) The production ecology of wetlands. Cambridge University Press, Cambridge

    Google Scholar 

  152. Whigham DF, Dykyjová D, Hejný S (1993) Wetlands of the world I: inventory, ecology and management. Kluwer, Dordrecht

    Google Scholar 

  153. Williams M (ed) (1990) Wetlands. A threatened landscape. Basil Blackwell, Oxford, p 419

    Google Scholar 

  154. Zemanová K, Čížková H, Edwards K, Šantrůčková H (2008) Soil CO2 efflux in three wet meadow ecosystems with different C and N status. Comm Ecol 9(Suppl):49–55

    Article  Google Scholar 

Download references

Acknowledgments

Work on this paper was supported by the projects NPV 2B06023 and MSM 6007665801 of the Ministry of Education, Youth and Sports of the Czech Republic, 526/09/1545 of the Grant Agency of the Czech Republic and QH 82078 of the Czech National Agency of Agricultural Research. We warmly thank Hana Šantrůčková for helpful comments on the manuscript, Štěpán Husák for providing the information on Coleanthus subtilis, Václav Nedbal for techical help with the compilation of the map of European wetlands (Fig. 1), Jakub Brom for providing photographs in Fig. 5, and Ondřej Novák for technical help with the preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Květ.

Additional information

This article belongs to the Special Issue “Effects of Climate Change on Wetlands”.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Čížková, H., Květ, J., Comín, F.A. et al. Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci 75, 3–26 (2013). https://doi.org/10.1007/s00027-011-0233-4

Download citation

Keywords

  • Wetlands
  • Carbon sequestration
  • Hydrology
  • Biodiversity
  • Climate stabilization
  • Ecosystem services