Aquatic Sciences

, Volume 75, Issue 1, pp 3–26 | Cite as

Actual state of European wetlands and their possible future in the context of global climate change

  • Hana Čížková
  • Jan Květ
  • Francisco A. Comín
  • Raija Laiho
  • Jan Pokorný
  • David Pithart
Effects of Climate Change on Wetlands

Abstract

The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other.

Keywords

Wetlands Carbon sequestration Hydrology Biodiversity Climate stabilization Ecosystem services 

References

  1. Adam P (1990) Saltmarsh ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol Annu Rev 45:345–405Google Scholar
  3. Alm J, Schulman L, Walden J, Nykänen H, Martikainen PJ, Silvola J (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–174CrossRefGoogle Scholar
  4. Anderson J (2008) Climate change induced water stress and its impact on natural and managed ecosystems. European Parliament-Policy Department Economic and Scientific Policy, IP/A/ENVI/FWC/2006-172/LOTI/C1SC12Google Scholar
  5. Anonymous (2003) Information sheet on Ramsar wetlands. Wolderwijd en Nuldernauw. Available at: http://www.wetlands.org/reports/ris/3NL042en.pdf. Accessed 18 Aug 2011
  6. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67:9–26CrossRefGoogle Scholar
  7. Arnfield AJ (2003) Two decades of urbane climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26CrossRefGoogle Scholar
  8. Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subartic fen. Geophys Res Lett 31:L16119CrossRefGoogle Scholar
  9. Aurela M, Ruitta T, Laurila T, Tuovinen J-P, Vesala T, Tuittila ES, Rinne J, Haapanala S, Laine J (2007) CO2 exchange of a sedge fen in souther Finland—the impact of a drought period. Tellus 59B:826–837Google Scholar
  10. Bloesch J (2004) Sedimentation and lake sediment formation. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook, vol 1. Limnology and limnetic ecology. Blackwell, Malden, pp 197–229Google Scholar
  11. Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) (2006) Wetlands: functioning, biodiversity conservation, and restoration. Springer, BerlinGoogle Scholar
  12. Boer MM, de Groot RS (eds) (1990) Landscape-ecological impacts of climatic change. IOS Press, Amsterdam, p 429Google Scholar
  13. Bragg OM, Lindsay R, Risager M, Silvius M, Zingstra H (ed) (2003) Strategy and action plan for mire and peatland conservation in Central Europe, Central European Peatland Project (CEPP). Wetlands International Publ.18, EdeGoogle Scholar
  14. Britton RH, Crivelli AJ (1993) Wetlands of southern Europe and North Africa: Mediterranean wetlands. In: Whigham DF, Dykyjová D, Hejný S (eds) Wetlands of the World I. Kluwer, Dordrecht, pp 129–194Google Scholar
  15. Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat Bot 69:313–324CrossRefGoogle Scholar
  16. Brom J, Pokorný J (2009) Temperature and humidity characteristics of two willow stands, a peaty meadow and a drained pasture and their impact on landscape functioning. Boreal Env Res 14:389–403Google Scholar
  17. Cabezas A, Comín FA, Walling DE (2009) Changing pattens of organic carbon and nitrogen accretion on the middle Ebro floodplain (NE Spain). Ecol Eng 35:1547–1558CrossRefGoogle Scholar
  18. Charman DJ (2002) Peatlands and environmental change. Wiley, ChichesterGoogle Scholar
  19. Christensen JH, Hewitson B (2007) Regional climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  20. Comín FA, Alonso M (1988) Spanish salt lakes, their chemistry and biota. Hydrobiol 159:237–245CrossRefGoogle Scholar
  21. Comín FA, Williams WD (1993) Parched continents: our common future? In: Margalef R (ed) Limnology now. A paradigm of planetary problems. Elsevier, Dordrecht, pp 473–527Google Scholar
  22. Comín FA, Julia R, Comín MP (1991) Fluctuations: the key aspect for the ecological interpretation of saline lake ecosystems. Oecol Aquat 10:127–135Google Scholar
  23. Comín FA, Calvo A, González M, Sorando R, Gallardo B, Cabezas A, Garcaía M, González E (2008) If flooding is the answer, what is the question? In: Gumiero B, Rinaldi M, Fokkens B (eds) River restoration 2008. CIRF, Venice, pp 513–518Google Scholar
  24. Costanza R, Farber SC, Maxwell J (1989) The valuation and management of wetland ecosystems. Ecol Econ 1:335–361CrossRefGoogle Scholar
  25. Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg H, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  26. Cowardin LM, Golet FC (1995) US Fish and Wildlife Service 1979 wetland classification: a review. Vegetation 118:139–152CrossRefGoogle Scholar
  27. Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Denman KL, Brasseur G (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–588Google Scholar
  29. Doody JP (2004) Coastal squeeze: a historical perspective. J Coast Conserv 10:138CrossRefGoogle Scholar
  30. Duever MJ (1990) Hydrology. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 61–89Google Scholar
  31. Dušek J, Čížková H, Czerný R, Taufarová K, Šmídová M, Janouš D (2009) Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agric For Meteorol 149:1524–1530CrossRefGoogle Scholar
  32. Dykyjová D, Květ J (eds) (1978) Pond littoral ecosystems. Structure and functioning. Ecological studies, vol 28. Springer, BerlinGoogle Scholar
  33. Eiseltová M (ed) (1994) Restoration of lake ecosystems. IWRB Publ 32:1–182. International Waterfowl and Wetlands Research Bureau, SlimbridgeGoogle Scholar
  34. Eiseltová M, Biggs J (1995) Restoration of stream ecosystems, IWRB Publ 37:1–170. International Waterfowl and Wetlands Research Bureau, SlimbridgeGoogle Scholar
  35. European Commission (1999) Interpretation manual of European Commission habitats. EUR/5, 2nd edn. European Commission, BrusselsGoogle Scholar
  36. Farrel CA, Doyle GJ (2003) Rehabilitation of industrial cutaway Atlantic blanket bog in County Mayo, North-West Ireland. Wetl Ecol Manag 11:21–35CrossRefGoogle Scholar
  37. Finlayson CM, D’Cruz R, Davidson N (eds) (2005) Millenium ecosystem assessment. Ecosystems and human well-being: wetlands and water. Synthesis. World Resources Institute, Washington, DCGoogle Scholar
  38. Fustec É, Lefeuvre JC (2000) Fonctions et valeurs des zones humides. Dunod, Paris, p 426Google Scholar
  39. Gilman K (1994) Cors Erddreiniog, Anglesey: a case study of wetland conservation (North Wales). In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 2. Case studies. SPB Academic Publishing, The Hague, pp 439–456Google Scholar
  40. Gopal B, Masing V (1990) Biology and ecology. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 91–239Google Scholar
  41. Gopal B, Květ J, Löffler H, Masing V, Patten B (1990) Definition and classification. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 9–15Google Scholar
  42. Gopal B, Hillbricht-Ilkowska A, Wetzel RG (eds) (1993) Wetlands and ecotones: studies on land–water interactions. National Institute of Ecology and International Scientific Publications, New DelhiGoogle Scholar
  43. Gopal B, Junk WJ, Davis JA (2000) Biodiversity in wetlands: assessment, function and conservation, vol 1. Backhuys Publishers, LeidenGoogle Scholar
  44. Gopal B, Junk WJ, Davis JA (2001) Biodiversity in wetlands: assessment, function and conservation, vol 2. Backhuys Publishers, LeidenGoogle Scholar
  45. Gore AJP (ed) (1983a) Ecosystems of the world 4A. Mires: swamp, bog, fen, and moor. General studies. Elsevier, AmsterdamGoogle Scholar
  46. Gore AJP (ed) (1983b) Ecosystems of the world 4A. Mires: swamp, bog, fen, and moor. Regional studies. Elsevier, AmsterdamGoogle Scholar
  47. Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetl Ecol Manag 11:109–119CrossRefGoogle Scholar
  48. Haslam SM (2008) The riverscape and the river. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Haslam SM, Klötzli F, Sukopp H, Szczepański A (1998) The management of wetlands. In: Westlake DF, Květ J, Szczepański A (eds) The production ecology of wetlands. Cambridge University Press, Cambridge, pp 405–464Google Scholar
  50. Hejný S (1957) Ein Beitrag zur ökologischen Gliederung der Makrophyten der tschechoslowakischen Niederungsgewässer. Preslia 29:349–368Google Scholar
  51. Hejný S (1960) Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen (Donau- und Theissgebiet). Vydavateĺstvo SAV, BratislavaGoogle Scholar
  52. Hejný S (1969) Coleanthus subtilis (Tratt.) Seidl in der Tschechoslowakei. Folia Geobot Phytotax 4:345–399Google Scholar
  53. Hejný S (1971) The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiol Bucuresti 12:71–85Google Scholar
  54. Hejný S, Husák Š (1978) Higher plant communities. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems. Structure and functioning. Ecological studies, vol 28. Springer, Berlin, pp 23–64Google Scholar
  55. Hejný S, Segal S, Raspopov IM (1998) General ecology of wetlands. In: Westlake DF, Květ J, Szczepański A (eds) The production ecology of wetlands. Cambridge University Press, Cambridge, pp 1–77Google Scholar
  56. Hejný S, Hroudová Z, Květ J (2002) Fishpond vegetation: an historical view. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco/Parthenon Publishing Group, Paris/Boca Raton, pp 63–95Google Scholar
  57. Hendriks DMD, Van Huissteden J, Dolman AJ, Van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeoscience 4:411–424CrossRefGoogle Scholar
  58. Hesslerová P, Pokorný J (2010) The synergy of solar radiation, plant biomass and humidity as an indicator of ecological functions of the landscape: a case study from Central Europe. Integr Env Assess Monit 6:249–259Google Scholar
  59. Hillbricht-Ilkowska A, Pieczyńska E (eds) (1993) Nutrient dynamics and retention in land/water ecotones of lowland, temperate lakes and rivers. Developments in Hydrobiology, vol 82. Kluwer, DordrechtGoogle Scholar
  60. Hofstede JLA (2003) Integrated management of artificially created salt marshes in the Wadden See of Schleswig-Holstein, Germany. Wetl Ecol Manag 11:183–194CrossRefGoogle Scholar
  61. Holland MM, Risser PG, Naiman RJ (eds) (1991) Ecotones. Chapman and Hall, New YorkGoogle Scholar
  62. Hroudová Z (1981) Seasonal vegetation dynamics on emerged pond bottom. Sborník Jihočeského muzea v Českých Budějovicích. Přírodní vědy 21:37–49 (in Czech with English summary)Google Scholar
  63. Jaatinen K, Laiho R, Vuorenmaa A, del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H (2008) Responses of aerobic microbial communities and soil respiration to water level drawdown in a northern boreal fen. Environ Microbiol 10:339–353PubMedCrossRefGoogle Scholar
  64. Janda J, Ševčík J (2002) Avifauna of the Třeboň fishponds and new wetlands. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco/Parthenon Publishing Group, Paris/Boca Raton, pp 475–480Google Scholar
  65. Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs G-, Smith P, Valentini R, Schulze ED (2005) The carbon budget of terrestrial ecosystems at country-scale—a European case study. Biogeoscience 2:15–26CrossRefGoogle Scholar
  66. Jeglum JK, Hooijer A (2006) The biology of peatlands. Oxford University Press, OxfordGoogle Scholar
  67. Jeník J, Hátle M, Hlásek J (2002) Preservation of ecological and socio-economic roles of human-managed wetlands. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Unesco/Parthenon Publishing Group, Paris/Boca Raton, pp 481–486Google Scholar
  68. Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, JyväskylaGoogle Scholar
  69. Jörgensen SE, Löffler H (eds) (1990) Guidelines of lake management, vol 3. International Lake Environment Committee, UN Environment Programme, OtsuGoogle Scholar
  70. Junk WJ, Welcomme RL (1990) Floodplains. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 491–524Google Scholar
  71. Kaki T, Ojala A, Kankaala P (2001) Diel variation in CH4 emissions from stands of Phragmites australis (Cav.) Trin. Ex Steud. and Typha latifolia L. in a boreal lake. Aquat Bot 71:259–271CrossRefGoogle Scholar
  72. Kankaala P, Makela S, Bergstrom I, Huitu E, Kaki T, Ojala A, Rantakari M, Kortelainen P, Arvola L (2003) Midsummer spatial variation in CH4 efflux from stands of littoral vegetation in a boreal meso-eutrophic lake. Freshw Biol 48:1617–1629CrossRefGoogle Scholar
  73. Kankaala P, Ojala A, Kaki T (2004) Temporal and spatial variation in methane emission from a flooded transgression shore of boreal lake. Biogeochemistry 68:297–311CrossRefGoogle Scholar
  74. Keddy PA (2000) Wetland ecology. Cambridge University Press, CambridgeGoogle Scholar
  75. Kolmanová A, Rektoris L, Přibáň K (1999) Retention ability of pine peat bog ecosystem and its response to downpour precipitation. In: Vymazal J (ed) Nutrient cycling and retention in natural and constructed wetlands. Backhuys Publishers, Leiden, pp 177–182Google Scholar
  76. Kořínek V, Fott J, Fuksa J, Lellák J, Pražáková M (1987) Carp ponds of Central Europe. In: Michael RG (ed) Managed aquatic ecosystems. Ecosystems of the world, vol 29. Elsevier, Amsterdam, pp 29–62Google Scholar
  77. Kravčík M, Pokorný J, Kohutiar J, Kováč M, Tóth E (2008) Water for the recovery of the climate—a new water paradigm. Available at: http://www.waterparadigm.org/indexen.php?web=./home/homeen.html. Accessed 18 Aug 2011
  78. Kubů F, Květ J, Hejný S (1994) Fishpond management in Czechoslovakia. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 2: case studies. SPB Academic Publishing, The Hague, pp 391–404Google Scholar
  79. Květ J, Jeník J, Soukupová L (eds) (2002) Freshwater wetlands and their sustainable future, a case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the Biosphere Series, vol 28. UNESCO/Parthenon Publishing Group, Paris/Boca RatonGoogle Scholar
  80. Lachavanne JB, Juge R (ed) (1997) Biodiversity in land-inland water ecotones. Man and the biosphere series 18, I–XVIII and 1–308. UNESCO/Parthenon Publishing Group, Paris/CarnforthGoogle Scholar
  81. Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cycles 17(2):1053. doi:10.1029/2002GB002015 CrossRefGoogle Scholar
  82. Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802CrossRefGoogle Scholar
  83. Laitinen J, Kukko-Oja K, Huttunen A (2008) Stability of the water regime forms a vegetation gradient in minerotrophic mire expanse vegetation of a boreal aapa mire. Ann Bot Fenn 45:342–358CrossRefGoogle Scholar
  84. Lappalainen E (ed) (1996) Global peat resources. International Peat Society and Geological Survey of Finland, EspooGoogle Scholar
  85. LeMer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50CrossRefGoogle Scholar
  86. Lhotský R (2006) Retenční funkce Třeboňské rybniční soustavy (Retention function of the Trebon fishpond system, in Czech). Vodní hospodářství 56:410–418Google Scholar
  87. Lieffers VJ (1988) Sphagnum and cellulose decomposition in drained and natural areas of an Alberta peatland. Can J Soil Sci 68:755–761CrossRefGoogle Scholar
  88. Löffle H, Gunatilaka A (1994) The shallow lake and reed (Phragmites australis) wetland of Neusiedlersee (Austria). In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 2. Case studies. SPB Academic Publishing, The Hague, pp 183–202Google Scholar
  89. Löffler H (1974) Der Neusiedlersee. Naturgeschichte eines Steppensees. Verlag Fritz Molden, WienGoogle Scholar
  90. Löffler H (1982) Der Seewinkel. Die fast verlorene Landschaft. Verlag Niederösterreichisches Pressehaus, St.PöltenGoogle Scholar
  91. Löffler H (1990) Human uses. In: Patten BC (ed) Wetlands and shallow continental water bodies, vol 1. Natural and human relationships. SPB Academic Publishing, The Hague, pp 17–27Google Scholar
  92. Lowe AJ, Howard T, Pardaens A, Tinker J, Jenkins G, Jeff Ridley J, Leake J, Holt J, Wakelin S, Wolf J, Horsburgh K, Reeder T, Milne G, Bradley S, Dye S (2009) Online marine and coastal projections. Available at: http://ukclimateprojections.defra.gov.uk/content/view/825/518. Accessed 18 Aug 2011
  93. MacArthur R, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  94. Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63:254–272CrossRefGoogle Scholar
  95. Meehl G, Stocker TF (2007) Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–846Google Scholar
  96. Middleton B (ed) (2002) Flood pulsing in wetlands. Wiley, New YorkGoogle Scholar
  97. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New YorkGoogle Scholar
  98. Moore PD (ed) (1984) European mires. Academic Press, LondonGoogle Scholar
  99. Moore PD, Bellamy DJ (1974) Peatlands. Elek Science, LondonCrossRefGoogle Scholar
  100. Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. J Ecol 90:25–36CrossRefGoogle Scholar
  101. Naiman RJ, Décamps H (1990) The ecology and management of aquatic-terrestrial ecotones. Man and the biosphere series, vol 4. UNESCO/Parthenon Publishing Group, Paris/CarnforthGoogle Scholar
  102. Nivet C, Frazier S (2004) A review of European wetland inventory. Wetlands International and the Dutch Institute for Inland Water Management and Waste Water Treatment (RIZA). Available at: http://www.wetlands.org/RSIS/WKBASE/pewi/intro.htm. Accessed 18 Aug 2011
  103. O’Sullivan PE, Reynolds CS (eds) (2004) The lakes handbook, vol 1. Limnology and limnetic ecology. Blackwell, MaldenGoogle Scholar
  104. O’Sullivan PE, Reynolds CS (eds) (2005) The lakes handbook, vol 2. Lake restoration and rehabilitation. Blackwell, MaldenGoogle Scholar
  105. Orme AR (1990) Wetland morphology, hydrodynamics and sedimantation. In: Williams M (ed) Wetlands. A threatened landscape. Basil Blackwell, Oxford, pp 42–94Google Scholar
  106. Paavilainen E, Päivänen J (1995) Peatland forestry: ecology and principles. Ecological Studies, vol 111. Springer, BerlinGoogle Scholar
  107. Patten BC (ed) (1990) Wetlands and shallow continental water bodies, vol 1: natural and human relationships. SPB Academic Publishing, The HagueGoogle Scholar
  108. Patten BC (ed) (1994) Wetlands and shallow continental water bodies, vol 2: case studies. SPB Academic Publishing, The HagueGoogle Scholar
  109. Pechar L, Hrbáček J, Pithart D, Dvořák J (1996) Ecology of pools in the floodplain. In: Prach K, Jeník J, Large ARG (eds) Floodplain ecology and management. SPB Academic Publishing BV, Amsterdam, pp 209–226Google Scholar
  110. Pechar L, Přikryl I, Faina R (2002) Hydrobiological evaluation of Třeboň fishponds since the end of the nineteenth century. In: Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future. A case study of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the biosphere series, vol 28. UNESCO/Parthenon Publishing Group, Paris/Boca Raton, pp 31–61Google Scholar
  111. Penka M, Vyskot M, Klimo E, Vašíček F (1985) Floodplain forest ecosystem I. Before management measures. Academia, PrahaGoogle Scholar
  112. Penka M, Vyskot M, Klimo E, Vašíček F (1991) Floodplain forest ecosystem II. After management measures. Academia, PrahaGoogle Scholar
  113. Phillips GL (2005) Eutrophication of shallow lakes. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook, vol 2. Lake restoration and rehabiltation. Blackwell, Malden, pp 261–278Google Scholar
  114. Picek T, Čížková H, Dušek J (2007) Greenhouse gas emissions from a constructed wetland—plants as important source of carbon. Ecol Eng 27:153–165Google Scholar
  115. Pithart D, Křováková K, Dušek J, Žaloudík J (2008) Case study: ecosystem services of a floodplain with a preserved hydrological regime, Czech Republic. In: Saalismaa N et al (eds) The role of environmental management and eco-engineering in disaster risk reduction and climate change adaptation. Pro Act Network, Geneva, pp 34–36Google Scholar
  116. Pokorný J (2001) Dissipation of solar energy in landscape—controlled by management of water and vegetation. Renew Energy 24:641–645CrossRefGoogle Scholar
  117. Prach K, Jeník J, Large ARG (eds) (1996) Floodplain ecology and management. SPB Academic Publishing BV, AmsterdamGoogle Scholar
  118. Prach K, Pithart D, Francírková T (ed) (2003) Ekologické funkce hospodaření v říčních nivách (Ecological functions of floodplain management, in Czech). Institute of Botany, Czech Academy of Sciences, TřeboňGoogle Scholar
  119. Procházka J, Brom J, Pechar L (2009) The comparison of water and matter flows in three small catchments in the Šumava mts. Soil Water Res 4(2):75–82Google Scholar
  120. Pruett L, Cimino J (2000) Global Maritime Boundaries Database (GMBD). Veridian-MRJ Technology Solutions, Fairfax. Available at: http://earthtrends.wri.org/text/coastal-marine/variable-61.html. Accessed 18 Oct 2011
  121. Purseglove J (1988) Taming the flood. Oxford University Press, Oxford, p 307Google Scholar
  122. Rajchard J, Fridrichovský V, Křiváčková O, Navrátilová J (2008) Colonization of waterbirds of artificial lakes after surface mining: a case study. Acta Zool Sin 54:602–614Google Scholar
  123. Ranwell DS (1972) Ecology of salt marshes and sand dunes. Chapman and Hall, LondonGoogle Scholar
  124. Rejmánek M, Velásquez J (1978) Communities of emerged fishpond shores and bottoms. In: Dykyjová D, Květ J (eds) Pond littoral ecosystems. Structure and functioning. Ecological studies, vol 28. Springer, Berlin, pp 206–211Google Scholar
  125. Rinne J, Ruita T, Philatie M, Aurela M, Haapanala S, Tuovinen JP, Tuitilla ES (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59B:449–457Google Scholar
  126. Ripl W (2003) Water: the bloodstream of the biosphere. Phil Trans R Soc B 358:1921–1934PubMedCrossRefGoogle Scholar
  127. Rodewald-Rudescu L (1974) Das Schilfrohr. Die Binnengewässer, vol 27. Schweizerbart’scher Verlag, StuttgartGoogle Scholar
  128. Rodo XE (2003) Interactions between the tropics and the extratropics. In: Rodo XE, Comín FA (eds) Global climate: current uncertainties and research in the climate system. Springer, Heidelberg, pp 237–274Google Scholar
  129. Rodo XE, Baert E, Comin FA (1997) Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Climatol Dyn 13:275–284CrossRefGoogle Scholar
  130. Ruhl JB, Kraft SE, Lant CL (2007) The law and policy of ecosystem services. Island Press, Washington, DCGoogle Scholar
  131. Rydin H, Jeglum JK (2006) The biology of peatlands. Oxford University Press, OxfordCrossRefGoogle Scholar
  132. Schreader CP, Rouse WR, Griffis TJ, Boudreau LD, Blanken PD (1998) Carbon dioxide fluxes in a northern fen during a hot, dry summer. Glob Biogeochem Cycles 12:729–740CrossRefGoogle Scholar
  133. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51CrossRefGoogle Scholar
  134. Seják J et al (2003) Hodnocení a oceňování biotopů České republiky (Assessment and valuation of biotopes of the Czech Republic, in Czech). Český ekologický ústav, PrahaGoogle Scholar
  135. Sliva J, Pfadenhauer J (1999) Restoration of cut-over raised bogs in southern Germany—a comparison of methods. Appl Veg Sci 2:137–148CrossRefGoogle Scholar
  136. Straškraba M (1963) Share of the littoral vegetation in the productivity of two fishponds in Southern Bohemia. Rozpravy Čs. Akademie Věd, Řada Mat Přír Věd 73(13):1–64Google Scholar
  137. Straškraba M (1968) Der Anteil der höheren Pflanzen an der Produktion der stehenden Gewässer. Mitt Intern Ver Theor Angew Limnol 14:212–230Google Scholar
  138. Straškraba M, Kořínková J, Poštolková M (1967) Contribution to the productivity of the littoral region of ponds and pools. Rozpravy Čs. Akademie Věd, Řada Mat Přír Věd 77(11):1–80Google Scholar
  139. Šumberová K, Horáková V, Lososová Z (2005) Vegetation dynamics on exposed pond bottoms in the Českobudějovický basin (Czech Republic). Phytocoenologia 35:421–448CrossRefGoogle Scholar
  140. Šumberová K, Lososová Z, Fabšičová M, Horáková V (2006) Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia 78:235–252Google Scholar
  141. Šusta J (1898) Fünf Jahrhunderte der Teichwirtschaft in Wittingau. Herrcke u. Lebeling, StettinGoogle Scholar
  142. Turner RK, Georgiou S, Fisher B (2008) Valuing ecosystem services. The case of multi-functional wetlands. Earthscan, LondonGoogle Scholar
  143. Vasander H (1982) Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Ann Bot Fenn 19:103–125Google Scholar
  144. Vasander H, Laiho R, Laine J (1997) Changes in species diversity in peatlands drained for forestry. In: Trettin CC, Jurgensen MF, Grigal DF, Gale MR, Jeglum JK (eds) Northern Forested Wetlands: ecology and management. CRC Press/Lewis Publishers, Boca Raton, pp 109–119Google Scholar
  145. Vasander H, Tuittila ES, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen ML, Laine J (2003) Status and restoration of peatlands in Northern Europe. Wetl Ecol Manag 11:51–63CrossRefGoogle Scholar
  146. Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (2006) Wetlands and natural resource management. Ecological studies, vol 190. Springer, BerlinCrossRefGoogle Scholar
  147. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876CrossRefGoogle Scholar
  148. Vymazal J (1995) Algae and element cycling in wetlands. Lewis Publishers, Boca RatonGoogle Scholar
  149. Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) (1998) Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, LeidenGoogle Scholar
  150. Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ü (2006) Constructed wetlands for wastewater treatment. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and natural resource management. Ecological studies, vol 190. Springer, Berlin, pp 69–96CrossRefGoogle Scholar
  151. Westlake DF, Květ J, Szczepański A (eds) (1998) The production ecology of wetlands. Cambridge University Press, CambridgeGoogle Scholar
  152. Whigham DF, Dykyjová D, Hejný S (1993) Wetlands of the world I: inventory, ecology and management. Kluwer, DordrechtGoogle Scholar
  153. Williams M (ed) (1990) Wetlands. A threatened landscape. Basil Blackwell, Oxford, p 419Google Scholar
  154. Zemanová K, Čížková H, Edwards K, Šantrůčková H (2008) Soil CO2 efflux in three wet meadow ecosystems with different C and N status. Comm Ecol 9(Suppl):49–55CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Hana Čížková
    • 1
  • Jan Květ
    • 2
  • Francisco A. Comín
    • 3
  • Raija Laiho
    • 4
  • Jan Pokorný
    • 5
  • David Pithart
    • 6
  1. 1.Faculty of AgricultureUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Instituto Pirenaico Ecología-CSICZaragozaSpain
  4. 4.Department of Forest EcologyUniversity of HelsinkiHelsinkiFinland
  5. 5.ENKI, o.p.s.TřeboňCzech Republic
  6. 6.Daphne ČR, Institute of Applied EcologyTřeboňCzech Republic

Personalised recommendations