Advertisement

Aquatic Sciences

, Volume 71, Issue 4, pp 479–486 | Cite as

Effects of conspecifics on settling juveniles of the invasive golden mussel, Limnoperna fortunei

  • Paula Sardiña
  • Daniel H. Cataldo
  • Demetrio Boltovskoy
Research Article

Abstract

We conducted a field experiment to assess the influence of conspecific adults on recruitment success of the golden mussel Limnoperna fortunei. Tiles, 225 cm2 surface area, were used as artificial substrates in four treatments: control (blank tiles), low (800 mussels m−2), medium (4,000 mussels m−2) and high (12,000 mussels m−2) density treatments. Results indicated that recruitment was strongly affected by the presence and density of conspecifics. After one and 3 months of exposure, numbers of recruits were significantly higher on tiles with conspecific adults than on blank tiles, and there was a positive and significant relationship between the number of recruits and the number of adults in the three treatments assayed. Also, after 3 months of exposure, recruits in all treatments with adults present were larger than recruits in the control treatment. Our results suggest that conspecific adults have a positive effect on recruitment success and growth of newly settled juveniles through factors that enhance larval settling or that contribute to the survival of settlers in areas colonized by adult conspecifics.

Keywords

Limnoperna fortunei Golden mussel Settling Conspecifics Adults Juveniles 

Notes

Acknowledgments

This work was financed by grants UBA X096 from the Universidad de Buenos Aires, and PICT 25275 BID 1728/OC-AR from the Agencia Nacional de Promoción Científica y Tecnológica to DB.

References

  1. Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67(2):192–204CrossRefGoogle Scholar
  2. Boltovskoy D, Izaguirre I, Correa N (1995) Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312:171–182CrossRefGoogle Scholar
  3. Boltovskoy D, Correa N, Cataldo D, Sylvester F (2006) Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963CrossRefGoogle Scholar
  4. Boschi EE (1981) Decapoda natantia. In: Ringuelet RA (ed) Fauna de agua dulce de la República Argentina. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, pp 1–61Google Scholar
  5. Browne KA, Zimmer RK (2001) Controlled field release of a waterborne chemical signal stimulated planktonic larvae to settle. Biol Bull 200:87–91CrossRefPubMedGoogle Scholar
  6. Burke RD (1986) Pheromones and the gregarious settlement of marine invertebrate larvae. Bull Mar Sci 39(2):323–331Google Scholar
  7. César I, Ocón CS, Paggi AC, Rodrigues Capítulo A, Spaccesi F, Tangorra M, Tassara M (2000) Diversidad de invertebrados bentónicos del Río de la Plata. Biol Acuática 19:27–64Google Scholar
  8. Chase ME, Bailey RC (1996) Recruitment of Dreissena polymorpha: Does the presence and density of conspecifics determine the recruitment density and pattern in a population? Malacol 38:19–31Google Scholar
  9. Côté IM, Jelnikar E (1999) Predator-induced clumpling behavior in mussels (Mytilus edulis Linnaeus). J Exp Mar Biol Ecol 235(2):201–211CrossRefGoogle Scholar
  10. Darrigran G (2002) Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biol Invasions 4:45–156CrossRefGoogle Scholar
  11. Hadfield MG, Paul VJ (2001) Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock JB, Baker W (eds) Mar Chem Ecol. CRC Press, USA, pp 431–461Google Scholar
  12. Harvey M, Bourget E, Ingram RG (1995) Experimental evidence of passive accumulation of marine bivalve larvae on filamentous epibenthic structures. Limnol Oceanogr 40:94–104Google Scholar
  13. Hebert PDN, Wilson CC, Murdoch MH, Lazar R (1991) Demography and ecological impacts of the invading mollusc Dreissena polymorpha. Can J Zool 69:405–409CrossRefGoogle Scholar
  14. Highsmith RC (1982) Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: adult sand dollar beds. Ecology 63(2):329–337CrossRefGoogle Scholar
  15. Kavouras JH, Maki JS (2003) Effects of biofilms on zebra mussel postveliger attachment to artificial surfaces. Invertebr Biol 122(2):138–151Google Scholar
  16. Leitz T, Wagner T (1993) The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata. Mar Biol 115:173–178CrossRefGoogle Scholar
  17. Lewandowski K (1982) The role of early developmental stages in the dynamics of Dreissena polymorpha (Pall.) (Bivalvia) populations in lakes. II. Settling of larvae and the dynamics of number of settled individuals. Ekol Polska 30:223–286Google Scholar
  18. Liebig JR, Vanderploeg HA (1995) Vulnerability of Dreissena polymorpha larvae to predation by Great Lakes calanoid copepods: the importance of the bivalve shell. J Great Lakes Res 21:353–358Google Scholar
  19. Lopez GR (1988) Comparative ecology of the macrofauna of freshwater and marine muds. Limnol Oceanogr 33:946–962Google Scholar
  20. Lopretto EC (1995) Crustacea Eumalacostraca. In: Lopretto EC, Tell GT (eds) Ecosistemas de aguas continentales. Metodologías para su estudio. Ediciones Sur, La Plata, pp 1001–1039Google Scholar
  21. MacIsaac H, Sprules GW, Leach JH (1991) Ingestion of small-bodied zooplankton by zebra mussels (Dreissena polymorpha): can cannibalism of larvae influence population dynamics? Can J Fish Aquat Sci 48:2051–2060CrossRefGoogle Scholar
  22. Matsumura K, Nagano M, Fusetani N (1998) Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. Comp Physiol Biochem 281:12–20Google Scholar
  23. McEwen GF, Johnson MW, Folsom TR (1954) A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test observations. Archiv fűr Meteorologie. Geophysyk und Klimatologie A7(1):502–527Google Scholar
  24. Molloy DP, Karatayev AY, Burlakova EB, Kurandina DP, Laruelle F (1997) Natural enemies of Zebra Mussels: predators, parasites, and ecological competitors. Rev Fish Sci 5:27–97CrossRefGoogle Scholar
  25. Morse DE, Morse ANC (1991) Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol Bull 181:104–122CrossRefGoogle Scholar
  26. Mörtl M, Rothhaupt K-O (2003) Effects of adult Dreissena polymorpha on settling juveniles and associated macroinvertebrates. Int Rev Hydrobiol 88(6):561–569CrossRefGoogle Scholar
  27. Morton BS (1977) The population dynamics of Limnoperna fortunei (Dunker 1857) (Bivalvia: Mytilacea) in Plover Cove reservoir, Hong Kong. Malacol 16:165–182Google Scholar
  28. Okamura B (1986) Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 69(3):341–347CrossRefGoogle Scholar
  29. Pawlik JR (1988) Larval settlement and metamorphosis of sabellariid polychaetes, with special reference to Phragmatopoma lapidosa, a reef-building species, and Sabellaria floridensis, a non-gregarious species. Bull Mar Sci 43:41–60Google Scholar
  30. Pearce CM, Scheibling RE (1990) Induction of settlement and metamorphosis in the sand dollar Echinarachnius parma: evidence for an adult-associated factor. Mar Biol 107(2):363–369CrossRefGoogle Scholar
  31. Polis GA (1981) The evolution and dynamics of intraspecific predation. Annu Rev Ecol Syst 12:225–251CrossRefGoogle Scholar
  32. Rojas Molina F, Paggi JC, Devercelli M (2008) Espectro trófico de Limnoperna fortune (Bivalvia) en la llanura alluvial del Paraná medio. In: Proceedings of the 4th Argentine Conference on Limnology, San Carlos de Bailoche, 26–30 October 2008, pp 47Google Scholar
  33. Sardiña P, Cataldo DH, Boltovskoy D (2008) The effects of the invasive mussel, Limnoperna fortunei, on associated fauna in South American freshwaters: importance of physical structure and food supply. Fundam Appl Limnol 173(2):135–144CrossRefGoogle Scholar
  34. Sprung M (1989) Field and laboratory observations of Dreissena polymorpha larvae. abundance, growth, mortality) and food demands. Archiv für Hydrobiol 115:537–561Google Scholar
  35. Sylvester F, Dorado J, Boltovskoy D, Juárez A, Cataldo D (2005) Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia 534:71–80CrossRefGoogle Scholar
  36. Sylvester F, Boltovskoy D, Cataldo DH (2007a) The invasive bivalve Limnoperna fortunei enhances benthic invertebrate densities in South American floodplain rivers. Hydrobiologia 589:15–27CrossRefGoogle Scholar
  37. Sylvester F, Boltovskoy D, Cataldo DH (2007b) Fast response of freshwater consumers to a new trophic resource: predation on the recently introduced Asian bivalve Limnoperna fortunei in the lower Paraná river, South America. Austral Ecol 32(4):403–415CrossRefGoogle Scholar
  38. Tamburri MN, Zimmer RK, Zimmer CA (2006) Mechanisms reconciling gregarious larval settlement with adult cannibalism. Ecol Monogr 77(2):255–268CrossRefGoogle Scholar
  39. Thorp JH, Covich AP (2001) Ecology and classification of North American freshwater invertebrates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  40. Uryu Y, Iwasaki K, Hinoue M (1996) Laboratory experiments on behavior and movement of a freshwater mussel, Limnoperna fortunei (Dunker). J Molluscan Stud 62(3):327–341CrossRefGoogle Scholar
  41. Wainman BC, Hincks SS, Kaushik NK, Mackie GL (1996) Biofilm and substrate preference in the dreissenid larvae of Lake Erie. Can J Fish Aquat Sci 53:134–140CrossRefGoogle Scholar
  42. Werner S, Rothhaupt K-O (2007) Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. J N Am Benthol Soc 26(4):673–680CrossRefGoogle Scholar
  43. Young CM (1988) Ascidian cannibalism correlates with larval behavior and adult distribution. J Exp Mar Biol Ecol 117:9–26CrossRefGoogle Scholar
  44. Zimmer-Faust RK, Tamburri MN (1994) Chemical identity and ecological implications of a waterborne, larval settlement cue. Limnol Oceanogr 39(5):1075–1087CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Paula Sardiña
    • 1
    • 2
  • Daniel H. Cataldo
    • 1
    • 2
    • 3
  • Demetrio Boltovskoy
    • 1
    • 2
    • 3
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina
  3. 3.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations