Skip to main content
Log in

Cluster Scattering Diagrams and Theta Functions for Reciprocal Generalized Cluster Algebras

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We give a construction of generalized cluster varieties and generalized cluster scattering diagrams for reciprocal generalized cluster algebras, the latter of which were defined by Chekhov and Shapiro. These constructions are analogous to the structures given for ordinary cluster algebras in the work of Gross, Hacking, Keel, and Kontsevich. As a consequence of these constructions, we are also able to construct theta functions for generalized cluster algebras, again in the reciprocal case, and demonstrate a number of their structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Esther Banaian and Elizabeth Kelley. “Snake Graphs from Triangulated Orbifolds”. In: SIGMA Special Issue on Cluster Algebras 16 (2020).

  2. Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky. “Cluster algebras III: Upper bounds and double Bruhat cells”. In: Duke Mathematical Journal 126 (2003).

  3. Lara Bossinger et al. “Toric degenerations of cluster varieties and cluster duality”. In: Compositio Mathematica 156 (10 2020).

  4. Philippe Caldero and Bernhard Keller. “From triangulated categories to cluster algebras”. In: Inven- tiones mathematicae 172 (2008), pp. 169-211.

    Article  MathSciNet  MATH  Google Scholar 

  5. Michael Carl, Max Pumperla, and Bernd Siebert. “A tropical view on Landau-Ginzburg models”. In: preprint (2010).

  6. Frédéric Chapoton. “Enumerative properties of generalized associahedra”. In: Séeminaire Lotharingien de Combinatoire 51 (2004), B51b.

  7. Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky. “Polytopal realizations of generalized associahedra”. Canadian Mathematical Bulletin 45.4 (2002), pp. 537-566.

    Article  MathSciNet  MATH  Google Scholar 

  8. Leonid Chekhov. “Orbifold Riemann Surfaces and Geodesic Algebras”. In: Journal of Physics A: Mathematical and Theoretical 42.30 (2009).

  9. Leonid Chekhov and Marta Mazzocco. “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”. Advances in Mathematics 266.6 (2011), pp. 4731-4775.

  10. Leonid Chekhov and Michael Shapiro. “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”. In: International Mathematics Research Notices 2014 (2013), pp. 2746-2772.

    Article  MATH  Google Scholar 

  11. Man-Wai Cheung. “Theta functions and quiver Grassmannians”. In: arXiv:1906.12299 (2019).

  12. Man-Wai Cheung, Elizabeth Kelley, and Gregg Musiker. “Cluster scattering diagrams and theta basis for reciprocal generalized cluster algebras”. In: Sém. Lothar. Combin. B 85 (2021).

  13. Man-Wai Cheung, Timothy Magee, and Alfredo Nájera Chávez. “Compactifications of Cluster Varieties and Convexity”. In: International Mathematics Research Notices (2021).

  14. Anna Felikson, Michael Shapiro, and Pavel Tumarkin. “Cluster Algebras and Triangulated Orbifolds”. Advances in Mathematics 231.5 (2012), pp. 2953-3002.

    Article  MathSciNet  MATH  Google Scholar 

  15. Anna Felikson, Michael Shapiro, and Pavel Tumarkin. “Cluster algebras of finite mutation type via unfoldings”. In: International Mathematics Research Notices 8 (2012), pp. 1768-1804.

    MathSciNet  MATH  Google Scholar 

  16. Vladimir Fock and Alexander Goncharov. “Cluster ensembles, quantization, and the dilogarithm”. In: Annales scientifiques de l’École Normale Supérieure 42 (2009), pp. 865-930.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sergey Fomin and Andrei Zelevinsky. “Cluster Algebras I: Foundations”. Journal of the American Mathematical Society 15.2 (2002), pp. 497-529.

  18. Sergey Fomin and Andrei Zelevinsky. “Cluster Algebras IV: Coefficients”. Compositio Mathematica 143.1 (2007), pp. 112-164.

  19. Chris Fraser. “Cyclic symmetry loci in Grasssmannians”. In: arXiv:2010.05972 (2020).

  20. Christof Geiÿ, Bernard Leclerc, and Jan Schröer. “Generic bases for cluster algebras and the chamber ansatz”. Journal of the American Mathematical Society 25.1 (2012), pp. 21-76.

    MathSciNet  MATH  Google Scholar 

  21. Christof Geiß, Bernard Leclerc, and Jan Schröer. “Kac-Moody groups and cluster algebras”. In: Ad- vances in Mathematics 228 (2011), pp. 329-433.

    Article  MathSciNet  MATH  Google Scholar 

  22. Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. Cluster Algebras and Poisson Geometry. American Mathematical Society, 2010.

  23. Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. “Drinfeld double of GLn and generalized cluster structures”. In: Proceedings of the London Mathematical Society 116 (2017), pp. 429-484.

    Article  MATH  Google Scholar 

  24. Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. “Generalized cluster structure on the Drinfeld double of GLn”. Comptes Rendus Mathematique 354.4 (2016), pp. 345-349.

    Article  MathSciNet  MATH  Google Scholar 

  25. Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. “Generalized Cluster Structures Related to the Drinfeld Double of GLn”. In: arXiv:2004.05118 (2020).

  26. Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. “Periodic staircase matrices and generalized cluster structures”. In: International Mathematics Research Notices (2020).

  27. Anne-Sophie Gleitz. “Generalized cluster algebras and q-characters at roots of unity”. In: Discrete Mathematics & Theoretical Computer Science (2015), pp. 357-368.

  28. Anne-Sophie Gleitz. “Quantum affine algebras at roots of unity and generalized cluster algebras”. In: arXiv:1410.2446 (2014).

  29. Anne-Sophie Gleitz. “Representations of Uq(Lsl2) at roots of unity and generalised cluster algebras”. In: European Journal of Combinatorics 57 (2016), pp. 94-108.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mark Gross, Paul Hacking, and Sean Keel. “Birational geometry of cluster algebras”. Algebraic Geometry 2.2 (2015), pp. 137-175.

    Article  MathSciNet  MATH  Google Scholar 

  31. Mark Gross, Paul Hacking, and Sean Keel. “Mirror symmetry for log Calabi-Yau surfaces I”. Publications Mathématiques de l’IHES 122.1 (2015), pp. 65-168.

    Article  MathSciNet  MATH  Google Scholar 

  32. Mark Gross and Bernd Siebert. “From affine geometry to complex geometry”. In: Annals of Mathe- matics 174 (2011), pp. 1301-1428.

    Article  MathSciNet  MATH  Google Scholar 

  33. Mark Gross et al. “Canonical bases for cluster algebras”. In: Journal of the American Mathematical Society 31 (2018), pp. 497-608.

    Article  MathSciNet  MATH  Google Scholar 

  34. Alexander Grothendieck. “Elèments de gèomètrie algèbrique. I. Le langage des schèmas.” Publica- tions Mathèmatiques de l’IHÉS 4 (1960), pp. 5-228.

    Article  MATH  Google Scholar 

  35. Kohei Iwaki and Tomoki Nakanishi. “Exact WKB analysis and cluster algebras II: simple poles, orbifold points, and generalized cluster algebras”. International Mathematics Research Notices 2016.14 (2016), pp. 4375-4417.

  36. Rinat Kedem. “Q-systems as cluster algebras”. In: Journal of Physics A: Mathematical and Theoretical 89 (2008), pp. 183-216.

    MathSciNet  MATH  Google Scholar 

  37. Bernhard Keller. “Cluster algebras and derived categories”. In: arXiv:1202.4161 (2012).

  38. Bernhard Keller. “Cluster algebras, quiver representations, and triangulated categories”. In: Triangu- lated Categories (London Mathematical Society Lecture Note Series) (2010), pp. 76-160.

  39. Elizabeth Kelley. “Structural Properties of Reciprocal Generalized Cluster Algebras”. PhD thesis. University of Minnesota - Twin Cities, 2021.

  40. Maxim Kontsevich and Yan Soibelman. “Affine Structures and Non-Archimedean Analytic Spaces”. In: ed. by Pavel Etingof, Vladimir Retakh, and I.M. Singer. Progress in Mathematics. Birkhäuser Boston, 2006.

  41. Maxim Kontsevich and Yan Soibelman. “Stability structures, motivic Donaldson-Thomas invariants, and cluster transformations”. In: arXiv:0811.2435 (2008).

  42. Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki. “T-sytems and y-systems in integrable systems”. In: Journal of Physics A: Mathematical and Theoretical 44.10 (2011).

  43. Daniel Labardini-Fragoso and Diego Velasco. “On a family of Caldero-Chapoton algebras that have the Laurent phenomenon”. In: Journal of Algebra 520 (2019), pp. 90-135.

    Article  MathSciNet  MATH  Google Scholar 

  44. Ian Tuan-Yen Le. “Cluster structures on Higher Teichmüller Spaces for Classical Groups”. In: Forum of Mathematics, Sigma 7 (2019).

  45. Lang Mou. “Scattering diagrams for generalized cluster algebras”. In: arXiv:2110.02416 (2021).

  46. Greg Muller. “The Existence of a Maximal Green Sequence is not Invariant under Quiver Mutation”. In: The Electronic Journal of Combinatorics 23.2 (2016).

  47. Gregg Musiker, Lauren Williams, and Ralf Schiffler. “Bases for cluster algebras from surfaces”. In: Compositio Mathematica 149 (2013), pp. 217-263.

    Article  MathSciNet  MATH  Google Scholar 

  48. Kentaro Nagao. “Donaldson-Thomas theory and cluster algebras”. Duke Mathematical Journal 162.7 (2013), pp. 1313-1367.

    Article  MathSciNet  MATH  Google Scholar 

  49. Tomoki Nakanishi. “Structure of seeds in generalized cluster algebras”. In: Pacific Journal of Mathe- matics 277 (2014), pp. 201-217.

    Article  MathSciNet  MATH  Google Scholar 

  50. Tomoki Nakanishi and Dylan Rupel. “Companion cluster algebras to a generalized cluster algebra”. In: Travaux mathèmatiques 24 (2016), pp. 129-149.

    MathSciNet  MATH  Google Scholar 

  51. Tomoki Nakanishi and Andrei Zelevinsky. “On tropical dualities in cluster algebras”. In: Algebraic groups and quantum groups 565 (2012), pp. 217-226.

    Article  MathSciNet  MATH  Google Scholar 

  52. Nathan Reading. “Scattering Fans”. In: International Mathematics Research Notices 2020.23 (2020), pp. 9640-9673.

  53. Markus Reineke. “Poisson automorphisms and quiver moduli”. Journal of the Institute of Mathe- matics of Jussieu 9.3 (2010), pp. 653-667.

    Article  MathSciNet  MATH  Google Scholar 

  54. Idun Reiten. “Cluster categories”. Proceedings of the International Congress of Mathematicians (2010), pp. 558-594.

  55. Ralf Schiffler, Kyungyong Lee. “Positivity for Cluster Algebras”. Annals of Mathematics 182.1 (2015), pp. 73-125.

    MathSciNet  MATH  Google Scholar 

  56. Anna Wienhard. “An Invitation to Higher Teichmüller Theory”. In: Proceedings of the International Congress of Mathematicians 2 (2018), pp. 1031-1058.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Kelley.

Ethics declarations

Declarations

M. Cheung was partially supported by NSF Grant DMS-1854512. G. Musiker was partially supported by NSF Grant DMS-1745638. E. Kelley was partially supported by NSF Grants DMS-1745638 and DMS-1937241. The authors are grateful for the hospitality of RIMS in 2019 in Kyoto, Japan, during the “Cluster Algebras 2019” workshop, where this collaboration began, and to the anonymous reviewers whose careful reading and insightful comments improved the exposition of this paper. On behalf of all authors, the corresponding author states that the authors have no conflicts of interest.

Additional information

Communicated by Nathan Williams.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, MW., Kelley, E. & Musiker, G. Cluster Scattering Diagrams and Theta Functions for Reciprocal Generalized Cluster Algebras. Ann. Comb. 27, 615–691 (2023). https://doi.org/10.1007/s00026-022-00623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-022-00623-1

Keywords

Mathematics Subject Classification

Navigation