T. Adachi, The classification of \(\tau \)-tilting modules over Nakayama algebras, J. Algebra 452 (2016), 227–262.
MathSciNet
Article
Google Scholar
T. Adachi, Characterizing \(\tau \)-tilting finite algebras with radical square zero, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4673–4685.
MathSciNet
Article
Google Scholar
T. Adachi, O. Iyama, I. Reiten, \(\tau \)-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.
MathSciNet
Article
Google Scholar
T. Aihara, O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668.
T. Aoki, Classifying torsion classes for algebras with radical square zero via sign decomposition, arXiv:1803.03795v2.
E. Barnard, N. Reading, Coxeter-biCatalan combinatorics, J. Algebraic Combin. 47 (2018), no. 2, 241–300.
MathSciNet
Article
Google Scholar
D.J. Benson, Resolutions over symmetric algebras with radical cube zero, J. Algebra 320 (2008), no. 1, 48–56.
MathSciNet
Article
Google Scholar
S. Cautis, A. Licata, Heisenberg categorification and Hilbert schemes, Duke Math. J. 161 (2012), no. 13, 2469–2547.
MathSciNet
Article
Google Scholar
L. Demonet, O. Iyama, N. Reading, I. Reiten, H. Thomas, Lattice theory of torsion classes, arXiv:1711.01785.
F. Eisele, G. Janssens, T. Raedschelders, A reduction theorem for\(\tau \)-rigid modules, Math. Z. 290 (2018), no. 3-4, 1377–1413.
MathSciNet
Article
Google Scholar
K. Erdmann, Ø. Solberg, Radical cube zero weakly symmetric algebras and support varieties, J. Pure Appl. Algebra 215 (2011), no. 2, 185–200.
MathSciNet
Article
Google Scholar
E.L. Green, S. Schroll, Multiserial and special multiserial algebras and their representations, Adv. Math. 302 (2016), 1111–1136.
MathSciNet
Article
Google Scholar
R.S. Huerfano, M. Khovanov, A category for the adjoint representation, J. Algebra 246 (2001), no. 2, 514–542.
MathSciNet
Article
Google Scholar
M.A.A. Obaid, S.K. Nauman, W.M. Fakieh, C.M. Ringel, The number of support-tilting modules for a Dynkin algebra, J. Integer Seq. 18 (2015), no. 10, Article 15.10.6.
T. Okuyama, On blocks of finite groups with radical cube zero, Osaka J. Math. 23 (1986), no. 2, 461–465.
MathSciNet
MATH
Google Scholar
J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456.
P. Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
R.P. Stanley, Catalan numbers, Cambridge University Press, New York, 2015.
Book
Google Scholar
X. Zhang, \(\tau \)-rigid modules for algebras with radical square zero, arXiv:1211.5622v5.