We provide a new proof of a result of Baxter and Zeilberger showing that \({{\,\mathrm{inv}\,}}\) and \({{\,\mathrm{maj}\,}}\) on permutations are jointly independently asymptotically normally distributed. The main feature of our argument is that it uses a generating function due to Roselle, answering a question raised by Romik and Zeilberger.