Prakash Belkale and Shrawan Kumar. Eigenvalue problem and a new product in cohomology of flag varieties. Inventiones mathematicae, 166(1):185–228, 2006.
MathSciNet
Article
Google Scholar
Prakash Belkale, Shrawan Kumar, and Nicolas Ressayre. A generalization of Fulton’s conjecture for arbitrary groups. Math. Ann., 354(2):401–425, 2012.
MathSciNet
Article
Google Scholar
Georgia Benkart, Frank Sottile, and Jeffrey Stroomer. Tableau switching: algorithms and applications. J. Combin. Theory Ser. A, 76(1):11–43, 1996.
MathSciNet
Article
Google Scholar
Y. M. Chen, A. M. Garsia, and J. Remmel. Algorithms for plethysm. In Combinatorics and algebra (Boulder, Colo., 1983), volume 34 of Contemp. Math., pages 109–153. Amer. Math. Soc., Providence, RI, 1984.
Soojin Cho. A new littlewood-richardson rule for schur functions. Transactions of the American Mathematical Society, 365(2):939–972, 2013.
MathSciNet
Article
Google Scholar
Seung-Il Choi and Jae-Hoon Kwon. Crystals and Schur \(P\)-positive expansions. Electron. J. Combin., 25(3):Paper No. 3.7, 27, 2018.
Seung-Il Choi, Sun-Young Nam, and Young-Tak Oh. Bijections among combinatorial models for shifted Littlewood-Richardson coefficients. J. Combin. Theory Ser. A, 128:56–83, 2014.
MathSciNet
Article
Google Scholar
William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry.
Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics.
Dimitar Grantcharov, Ji Hye Jung, Seok-Jin Kang, Masaki Kashiwara, and Myungho Kim. Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux. Trans. Amer. Math. Soc., 366(1):457–489, 2014.
Mark D. Haiman. On mixed insertion, symmetry, and shifted Young tableaux. J. Combin. Theory Ser. A, 50(2):196–225, 1989.
MathSciNet
Article
Google Scholar
Ricky Ini Liu. An algorithmic Littlewood-Richardson rule. J. Algebraic Combin., 31(2):253–266, 2010.
MathSciNet
Article
Google Scholar
Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.
Piotr Pragacz. Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials. In Topics in invariant theory (Paris, 1989/1990), volume 1478 of Lecture Notes in Math., pages 130–191. Springer, Berlin, 1991.
Piotr Pragacz. Addendum: “A generalization of the Macdonald-You formula” [J. Algebra 204 (1998), no. 2, 573–587; MR1624487 (99g:05181)]. J. Algebra, 226(1):639–648, 2000.
Nicolas Ressayre. A cohomology-free description of eigencones in types A, B, and C. Int. Math. Res. Not. IMRN, pages 4966–5005, 2012.
N. Ressayre. Private communication, 2019.
J. B. Remmel and R. Whitney. Multiplying Schur functions. J. Algorithms, 5(4):471–487, 1984.
MathSciNet
Article
Google Scholar
Bruce E. Sagan. Shifted tableaux, Schur \(Q\)-functions, and a conjecture of R. Stanley. J. Combin. Theory Ser. A, 45(1):62–103, 1987.
MathSciNet
Article
Google Scholar
Luis Serrano. The shifted plactic monoid. Math. Z., 266(2):363–392, 2010.
MathSciNet
Article
Google Scholar
Mark Shimozono. Multiplying Schur \(Q\)-functions. J. Combin. Theory Ser. A, 87(1):198–232, 1999.
MathSciNet
Article
Google Scholar
John R. Stembridge. Shifted tableaux and the projective representations of symmetric groups. Adv. Math., 74(1):87–134, 1989.
MathSciNet
Article
Google Scholar
Ravi Vakil. A geometric Littlewood-Richardson rule. Ann. of Math. (2), 164(2):371–421, 2006. Appendix A written with A. Knutson.
Dennis E. White. Some connections between the Littlewood-Richardson rule and the construction of Schensted. J. Combin. Theory Ser. A, 30(3):237–247, 1981.
MathSciNet
Article
Google Scholar
Dale Raymond Worley. A theory of shifted Young tableaux. ProQuest LLC, Ann Arbor, MI, 1984. Thesis (Ph.D.)–Massachusetts Institute of Technology.
A. V. Zelevinsky. A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence. J. Algebra, 69(1):82–94, 1981.
MathSciNet
Article
Google Scholar