Bergeron, F., Biagioli, R., Rosas, M.H.: Inequalities between Littlewood-Richardson coefficients. J. Combin. Theory Ser. A 113(4), 567–590 (2006)
MathSciNet
Article
Google Scholar
Ballantine, C., Orellana, R.: Schur-positivity in a square. Electron. J. Combin. 21(3) (2014)
Dobrovolska, G., Pylyavskyy, P.: On products of \(\mathfrak{sl}_{\mathfrak{n}}\) characters and support containment. J. Algebra 316(2), 706–714 (2007)
MathSciNet
Article
Google Scholar
Fomin, S., Fulton, W., Li, C.-K., Poon, Y.-T.: Eigenvalues, singular values, and Littlewood-Richardson coefficients. Amer. J. Math. 127(1), 101–127 (2005)
MathSciNet
Article
Google Scholar
Kirillov, A.N.: An invitation to the generalized saturation conjecture. Publ. Res. Inst. Math. Sci. 40(4), 1147–1239 (2004)
MathSciNet
Article
Google Scholar
King, R.C., Welsh, T.A., van Willigenburg, S.J.: Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes. J. Algebraic Combin. 28(1), 139–167 (2008)
MathSciNet
Article
Google Scholar
Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)
MathSciNet
Article
Google Scholar
Lam, T., Postnikov, A., Pylyavskyy, P.: Schur positivity and Schur log-concavity. Amer. J. Math. 129(6), 1611–1622 (2007)
MathSciNet
Article
Google Scholar
McNamara, P.R.W.: Comparing skew Schur functions: a quasisymmetric perspective. J. Comb. 5(1), 51–85 (2014). https://doi.org/10.4310/JOC.2014.v5.n1.a3
MathSciNet
Article
MATH
Google Scholar
McNamara, P.R.W., van Willigenburg, S.: Positivity results on ribbon Schur function differences. European J. Combin. 30(5), 1352–1369 (2009). https://doi.org/10.1016/j.ejc.2008.09.026
MathSciNet
Article
MATH
Google Scholar
McNamara, P.R.W., van Willigenburg, S.: Maximal supports and Schur-positivity among connected skew shapes. European J. Combin. 33(6), 1190–1206 (2012). https://doi.org/10.1016/j.ejc.2012.02.001
MathSciNet
Article
MATH
Google Scholar
Okounkov, A.: Log-concavity of multiplicities with application to characters of \({\rm U}(\infty )\). Adv. Math. 127(2), 258–282 (1997)
MathSciNet
Article
Google Scholar
Rhoades, B., Skandera, M.: Kazhdan-Lusztig immanants and products of matrix minors. J. Algebra 304(2), 793–811 (2006)
MathSciNet
Article
Google Scholar
Rhoades, B., Skandera, M.: Kazhdan-Lusztig immanants and products of matrix minors. II. Linear Multilinear Algebra 58(1-2), 137–150 (2010). https://doi.org/10.1080/03081080701646638
MathSciNet
Article
MATH
Google Scholar
Tom, F., van Willigenburg, S.: Necessary conditions for Schur maximality. Electron. J. Combin. 25(2) (2018)
Stanley, R.P.: Ordered structures and partitions. PhD thesis, Harvard University (1971)
Stanley, R.P.: Ordered Structures and Partitions. American Mathematical Society, Providence, R.I. (1972). Memoirs of the American Mathematical Society, No. 119
Gessel, I.M.: Multipartite \(P\)-partitions and inner products of skew Schur functions. In: Combinatorics and Algebra (Boulder, Colo., 1983). Contemp. Math., vol. 34, pp. 289–301. Amer. Math. Soc., Providence, RI (1984)
Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge (1999)
Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Quasisymmetric Schur functions. J. Combin. Theory Ser. A 118(2), 463–490 (2011). https://doi.org/10.1016/j.jcta.2009.11.002
MathSciNet
Article
MATH
Google Scholar
Luoto, K., Mykytiuk, S., van Willigenburg, S.: An Introduction to Quasisymmetric Schur Functions. SpringerBriefs in Mathematics. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7300-8.
Berg, C., Bergeron, N., Saliola, F., Serrano, L., Zabrocki, M.: A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canad. J. Math. 66(3), 525–565 (2014). https://doi.org/10.4153/CJM-2013-013-0
MathSciNet
Article
MATH
Google Scholar
Pechenik, O.: The Genomic Schur Function is Fundamental-Positive. Ann. Comb. 24(1), 95–108 (2020). https://doi.org/10.1007/s00026-019-00483-2
MathSciNet
Article
MATH
Google Scholar
Carlsson, E., Mellit, A.: A proof of the shuffle conjecture. J. Amer. Math. Soc. 31(3), 661–697 (2018). https://doi.org/10.1090/jams/893
MathSciNet
Article
MATH
Google Scholar
Haglund, J.: A combinatorial model for the Macdonald polynomials. Proc. Natl. Acad. Sci. USA 101(46), 16127–16131 (2004). https://doi.org/10.1073/pnas.0405567101
MathSciNet
Article
MATH
Google Scholar
Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc. 18(3), 735–761 (2005). https://doi.org/10.1090/S0894-0347-05-00485-6
MathSciNet
Article
MATH
Google Scholar
Haglund, J., Haiman, M., Loehr, N., Remmel, J.B., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126(2), 195–232 (2005). https://doi.org/10.1215/S0012-7094-04-12621-1
MathSciNet
Article
MATH
Google Scholar
Duchamp, G., Hivert, F., Thibon, J.-Y.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput. 12(5), 671–717 (2002)
MathSciNet
Article
Google Scholar
Duchamp, G., Krob, D., Leclerc, B., Thibon, J.-Y.: Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à \(q=0\). C. R. Acad. Sci. Paris Sér. I Math. 322(2), 107–112 (1996)
MathSciNet
MATH
Google Scholar
Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at \(q=0\). J. Algebraic Combin. 6(4), 339–376 (1997)
MathSciNet
Article
Google Scholar
Norton, P.N.: \(0\)-Hecke algebras. J. Austral. Math. Soc. Ser. A 27(3), 337–357 (1979)
MathSciNet
Article
Google Scholar
McNamara, P.R.W., Ward, R.E.: Equality of \(P\)-partition generating functions. Ann. Comb. 18(3), 489–514 (2014). https://doi.org/10.1007/s00026-014-0236-7
MathSciNet
Article
MATH
Google Scholar
Féray, V.: Cyclic inclusion-exclusion. SIAM J. Discrete Math. 29(4), 2284–2311 (2015). https://doi.org/10.1137/140991364
MathSciNet
Article
MATH
Google Scholar
Hasebe, T., Tsujie, S.: Order quasisymmetric functions distinguish rooted trees. J. Algebraic Combin. 46(3-4), 499–515 (2017). https://doi.org/10.1007/s10801-017-0761-7
MathSciNet
Article
MATH
Google Scholar
Liu, R.I., Weselcouch, M.: \(P\)-partition generating function equivalence of naturally labeled posets. J. Combin. Theory Ser. A 170, 105136 (2020). https://doi.org/10.1016/j.jcta.2019.105136
MathSciNet
Article
MATH
Google Scholar
Liu, R.I., Weselcouch, M.: \({P}\)-partitions and quasisymmetric power sums. Int. Math. Res. Not. IMRN, 13975–14015 (2021). https://doi.org/10.1093/imrn/rnz375
Lam, T., Pylyavskyy, P.: \(P\)-partition products and fundamental quasi-symmetric function positivity. Adv. in Appl. Math. 40(3), 271–294 (2008)
MathSciNet
Article
Google Scholar
Browning, T., Hopkins, M., Kelley, Z.: Doppelgangers: the Ur-Operation and Posets of Bounded Height.arXiv:1710.10407 (2018)
Browning, T., Hopkins, M., Kelley, Z.: Doppelgangers: the Ur-operation and posets of bounded height (extended abstract). Sém. Lothar. Combin. 80B (2018)
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.8). (2019). https://www.sagemath.org
Ehrenborg, R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)
MathSciNet
Article
Google Scholar
Gessel, I.M.: Quasi-symmetric functions. Unpublished manuscript (1990)
Malvenuto, C.: Produits et Coproduits des Fonctions Quasi-symétriques et de L’algèbre des Descentes. Publications du Laboratoire de Combinatoire et d’Informatique Mathématique, vol. 16. Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec à Montréal (1993). Ph.D. thesis
Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)
MathSciNet
Article
Google Scholar
Malvenuto, C., Reutenauer, C.: Plethysm and conjugation of quasi-symmetric functions. Discrete Math. 193(1-3), 225–233 (1998). https://doi.org/10.1016/S0012-365X(98)00142-3. Selected papers in honor of Adriano Garsia (Taormina, 1994)
MathSciNet
Article
MATH
Google Scholar
Assaf, S., Bergeron, N.: Flagged ( P, \(\rho \) )-partitions. European J. Combin. 86, 103085 (2020). https://doi.org/10.1016/j.ejc.2020.103085
MathSciNet
Article
MATH
Google Scholar
Greene, C.: Some partitions associated with a partially ordered set. J. Combinatorial Theory Ser. A 20(1), 69–79 (1976). https://doi.org/10.1016/0097-3165(76)90078-9
MathSciNet
Article
MATH
Google Scholar
Stanley, R.P.: Enumerative Combinatorics. Volume 1, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (2012)