Skip to main content
Log in

Central Limit Theorem for Peaks of a Random Permutation in a Fixed Conjugacy Class of \(S_n\)

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

The number of peaks of a random permutation is known to be asymptotically normal. We give a new proof of this and prove a central limit theorem for the distribution of peaks in a fixed conjugacy class of the symmetric group. Our technique is to apply analytic combinatorics to study a complicated but exact generating function for peaks in a given conjugacy class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bayer, D. and Diaconis, P., Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2 (1992), 294–313.

    Article  MathSciNet  Google Scholar 

  2. Billey, S., Burdzy, K. and Sagan, B., Permutations with given peak set, J. Integer Seq. 16 (2013), Article 13.6.1.

  3. David, F. and Barton, D., Combinatorial chance, Hafner Publishing Co., 1962.

  4. Diaconis, P., Group representations in probability and statistics, Institute of Mathematical Statistics, Hayward, CA, 1988.

    MATH  Google Scholar 

  5. Diaconis, P., Fulman, J. and Holmes, S., Analysis of casino shelf shuffling machines, Annals Appl. Probab. 23 (2013), 1692–1720.

    Article  MathSciNet  Google Scholar 

  6. Diaconis, P. and Graham, R., Magical mathematics. The mathematical ideas that animate great magic tricks, Princeton University Press, 2012.

  7. Diaconis, P., McGrath, M. and Pitman, J., Riffle shuffles, cycles, and descents, Combinatorica 15 (1995), 11–29.

    Article  MathSciNet  Google Scholar 

  8. Fulman, J., Stein’s method and non-reversible Markov chains, in: Stein’s method: expository lectures and applications, 69-77, IMS Lecture Notes Monogr. Ser., 46, Inst. Math. Statist., 2004.

  9. Fulman, J., The distribution of descents in fixed conjugacy classes of the symmetric groups, J. Combin. Theory Ser. A 84 (1998), 171–180.

    Article  MathSciNet  Google Scholar 

  10. Fulman, J., Neumann, P. and Praeger, C., A generating function approach to the enumeration of matrices in classical groups over finite fields, Mem. Amer. Math. Soc. 176 (2005), no. 830.

  11. Gessel, I. and Reutenauer, C., Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A 64 (1993), 189–215.

    Article  MathSciNet  Google Scholar 

  12. Graham, R.L., Knuth, D.E., Patashnik, O., Concrete mathematics: a foundation for computer science, 2nd ed. Addison-Wesley, Reading, Mass. (1994).

  13. Harper, L., Stirling behavior is asymptotically normal, Ann. Math. Stat. 38 (1966), 410–414.

    Article  MathSciNet  Google Scholar 

  14. Kim, G., Distribution of descents in matchings, Annals Combin. 23 (2019), 73–87.

    Article  MathSciNet  Google Scholar 

  15. Kim, G. and Lee, S., Central limit theorems for descents in conjugacy classes of \(S_n\), J. Combin. Theory Ser. A 169 (2020), 105123,

    Article  MathSciNet  Google Scholar 

  16. Knuth, D., The art of computer programming, Volume 3. Sorting and searching, Addison-Wesley, 1973.

  17. Nyman, K., The peak algebra of the symmetric group, J. Algebraic Combin. 17 (2003), 309–322.

    Article  MathSciNet  Google Scholar 

  18. Petersen, K., Eulerian numbers, Birkhauser, 2015.

  19. Petersen, K., Enriched \(P\)-partitions and peak algebras, Adv. Math. 209 (2007), 561–610.

    Article  MathSciNet  Google Scholar 

  20. Pitman, J., Probabilistic bounds on the coefficients of polynomials with only real zeros, J. Combin. Theory Ser. A 77 (1997), 279–303.

    Article  MathSciNet  Google Scholar 

  21. Reiner, V., Signed permutation statistics and cycle type, Europ. J. Combin. 14 (1993), 569–579.

    Article  MathSciNet  Google Scholar 

  22. Robbins, H. “A Remark on Stirling’s Formula.” The American Mathematical Monthly 62, no. 1 (1955), 26–29.

    MathSciNet  MATH  Google Scholar 

  23. Schocker, M., The peak algebra of the symmetric group revisited, Adv. Math. 192 (2005), 259–309.

    Article  MathSciNet  Google Scholar 

  24. Stembridge, J., Enriched \(P\)-partitions, Trans. Amer. Math. Soc. 349 (1997), 763–788.

    Article  MathSciNet  Google Scholar 

  25. Tanny, S., A probabilistic interpretation of Eulerian numbers, Duke Math. J. 40 (1973), 717–722.

    Article  MathSciNet  Google Scholar 

  26. Vershynin, R., High-Dimensional Probability. Cambridge University Press, 2018.

  27. Warren, D. and Seneta, E., Peaks and Eulerian numbers in a random sequence, J. Appl. Probab. 33 (1996), 101–114.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to two referees for many detailed comments. Fulman was supported by Simons Foundation Grant 400528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Fulman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulman, J., Kim, G.B. & Lee, S. Central Limit Theorem for Peaks of a Random Permutation in a Fixed Conjugacy Class of \(S_n\). Ann. Comb. 26, 97–123 (2022). https://doi.org/10.1007/s00026-021-00561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-021-00561-4

Navigation