Skip to main content

Determinantal Formulas for SEM Expansions of Schubert Polynomials

Abstract

We show that for any permutation w that avoids a certain set of 13 patterns of length 5 and 6, the Schubert polynomial \({\mathfrak {S}}_w\) can be expressed as the determinant of a matrix of elementary symmetric polynomials in a manner similar to the Jacobi–Trudi identity. For such w, this determinantal formula is equivalent to a (signed) subtraction-free expansion of \(\mathfrak S_w\) in the basis of standard elementary monomials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bergeron, N., and Billey, S. RC-graphs and Schubert polynomials. Experiment. Math. 2, 4 (1993), 257–269.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Billey, S., and Pawlowski, B. Permutation patterns, Stanley symmetric functions, and generalized Specht modules. J. Combin. Theory Ser. A 127 (2014), 85–120.

    MathSciNet  Article  Google Scholar 

  3. 3.

    Billey, S. C., Jockusch, W., and Stanley, R. P. Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2, 4 (1993), 345–374.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bose, P., Buss, J. F., and Lubiw, A. Pattern matching for permutations. Inform. Process. Lett. 65, 5 (1998), 277–283.

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chen, W. Y. C., Li, B., and Louck, J. D. The flagged double Schur function. J. Algebraic Combin. 15, 1 (2002), 7–26.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chen, W. Y. C., Yan, G.-G., and Yang, A. L. B. The skew Schubert polynomials. European J. Combin. 25, 8 (2004), 1181–1196.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Fink, A., Mészáros, K., and St. Dizier, A. Zero-one Schubert polynomials. Math. Z. (2020). To appear.

  8. 8.

    Fomin, S., Gelfand, S., and Postnikov, A. Quantum Schubert polynomials. J. Amer. Math. Soc. 10, 3 (1997), 565–596.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fomin, S., and Kirillov, A. N. The Yang-Baxter equation, symmetric functions, and Schubert polynomials. In Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993) (1996), vol. 153, pp. 123–143.

  10. 10.

    Gessel, I., and Viennot, G. Determinants, paths, and plane partitions. Preprint.

  11. 11.

    Kirillov, A. N. Quantum Schubert polynomials and quantum Schur functions. vol. 9. 1999, pp. 385–404. Dedicated to the memory of Marcel-Paul Schützenberger.

  12. 12.

    Knutson, A., and Yong, A. A formula for \(K\)-theory truncation Schubert calculus. Int. Math. Res. Not., 70 (2004), 3741–3756.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Lascoux, A., and Schützenberger, M.-P. Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294, 13 (1982), 447–450.

    MATH  Google Scholar 

  14. 14.

    Lindström, B. On the vector representations of induced matroids. Bull. London Math. Soc. 5 (1973), 85–90.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Manivel, L. Symmetric functions, Schubert polynomials and degeneracy loci, vol. 6 of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3.

  16. 16.

    Postnikov, A., and Stanley, R. P. Chains in the Bruhat order. J. Algebraic Combin. 29, 2 (2009), 133–174.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Winkel, R. On the expansion of Schur and Schubert polynomials into standard elementary monomials. Adv. Math. 136, 2 (1998), 224–250.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph Johnson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by a National Science Foundation grant DMS-1700302. R. I. Liu was also partially supported by a National Science Foundation Grant CCF-1900460.

Communicated by Vasu Tewari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatam, H., Johnson, J., Liu, R.I. et al. Determinantal Formulas for SEM Expansions of Schubert Polynomials. Ann. Comb. (2021). https://doi.org/10.1007/s00026-021-00558-z

Download citation