Skip to main content

The Chromatic Quasisymmetric Class Function of a Digraph


We introduce a quasisymmetric class function associated with a group acting on a double poset or on a directed graph. The latter is a generalization of the chromatic quasisymmetric function of a digraph introduced by Ellzey, while the former is a generalization of a quasisymmetric function introduced by Grinberg. We prove representation-theoretic analogues of classical and recent results, including F-positivity, and combinatorial reciprocity theorems. We deduce results for orbital quasisymmetric functions, and study a generalization of the notion of strongly flawless sequences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Marcelo Aguiar and Swapneel Mahajan, Monoidal functors, species and Hopf algebras, CRM Monograph Series, vol. 29, American Mathematical Society, Providence, RI, 2010, With forewords by Kenneth Brown and Stephen Chase and André Joyal. MR2724388 (2012g:18009)

  2. 2.

    Per Alexandersson and Robin Sulzgruber, P-partitions and p-positivity, Sém. Lothar. Combin. 82B (2020), Art. 61, 12. MR4098282

  3. 3.

    Cristina Ballantine, Zajj Daugherty, Angela Hicks, Sarah Mason, and Elizabeth Niese, On quasisymmetric power sums, J. Combin. Theory Ser. A 175 (2020), 105273

    MathSciNet  Article  Google Scholar 

  4. 4.

    Matthias Beck and Raman Sanyal, Combinatorial reciprocity theorems, Graduate Studies in Mathematics, vol. 195, American Mathematical Society, Providence, RI, 2018, An invitation to enumerative geometric combinatorics. MR3839322

  5. 5.

    Peter J. Cameron, K. K. Kayibi, Orbital chromatic and flow roots, Combin. Probab. Comput. 16 (2007), 401–407.

    MathSciNet  Article  Google Scholar 

  6. 6.

    N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Brittney Ellzey, Chromatic quasisymmetric functions of directed graphs, Sém. Lothar. Combin. 78B (2017), Art. 74, 12. MR3678656

  8. 8.

    William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. MR1153249

  9. 9.

    Ira M. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR777705

  10. 10.

    Darij Grinberg, Double posets and the antipode of QSym, Electron. J. Combin. 24 (2017), no. 2, Paper 2.22, 47. MR3650271

  11. 11.

    Takayuki Hibi, What can be said about pure O-sequences?, J. Combin. Theory Ser. A 50 (1989), no. 2, 319–322.

  12. 12.

    June Huh, h-vectors of matroids and logarithmic concavity, Adv. Math. 270 (2015), 49–59.

  13. 13.

    Katharina Jochemko, Order polynomials and Pólya’s enumeration theorem, Electron. J. Combin. 21 (2014), no. 2, Paper 2.52, 11. MR3244818

  14. 14.

    Martina Juhnke-Kubitzke and Dinh Van Le, Flawlessness of h -vectors of broken circuit complexes, Int. Math. Res. Not. IMRN (2018), no. 5, 1347–1367. MR3801465

  15. 15.

    Claudia Malvenuto and Christophe Reutenauer, A self paired Hopf algebra on double posets and a Littlewood-Richardson rule, J. Combin. Theory Ser. A 118 (2011), no. 4, 1322–1333.

    MathSciNet  Article  Google Scholar 

  16. 16.

    John Shareshian and Michelle L. Wachs, Chromatic quasisymmetric functions, Adv. Math. 295 (2016), 497–551. MR3488041

  17. 17.

    Richard P. Stanley, Combinatorial reciprocity theorems, Adv. Math. 14 (1974), 194–253. MR411982

  18. 18.

    Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math. 111 (1995), no. 1, 166–194. MR1317387 (96b:05174)

  19. 19.

    Alan Stapledon, Equivariant Ehrhart theory, Adv. Math. 226 (2011), no. 4, 3622–3654. MR2764900

Download references

Author information



Corresponding author

Correspondence to Jacob A. White.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Vasu Tewari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

White, J.A. The Chromatic Quasisymmetric Class Function of a Digraph. Ann. Comb. (2021).

Download citation


  • Chromatic polynomials
  • Quasisymmetric functions
  • Poset partitions
  • Group actions

Mathematics Subject Classification

  • 05E05
  • 05E18