Skip to main content

The Degree of Symmetry of Lattice Paths


The degree of symmetry of a combinatorial object, such as a lattice path, is a measure of how symmetric the object is. It typically ranges from zero, if the object is completely asymmetric, to its size, if it is completely symmetric. We study the behavior of this statistic on Dyck paths and grand Dyck paths, with symmetry described by reflection along a vertical line through their midpoint; partitions, with symmetry given by conjugation; and certain compositions interpreted as bargraphs. We find expressions for the generating functions for these objects with respect to their degree of symmetry, and their semilength or semiperimeter, deducing in most cases that, asymptotically, the degree of symmetry has a Rayleigh or half-normal limiting distribution. The resulting generating functions are often algebraic, with the notable exception of Dyck paths, for which we conjecture that it is D-finite (but not algebraic), based on a functional equation that we obtain using bijections to walks in the plane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    M. Albenque, É. Fusy and D. Poulalhon, On symmetric quadrangulations and triangulations, European J. Combin. 35, 13–31 (2014).

    MathSciNet  Article  Google Scholar 

  2. 2.

    D. André, Solution directe du problème résolu par M. Bertrand, C. R. Acad. Sci. Paris 105, 436–437 (1887).

    MATH  Google Scholar 

  3. 3.

    M. Barnabei, F. Bonetti, S. Elizalde, M. Silimbani, Descent sets on \(321\)-avoiding involutions and hook decompositions of partitions, J. Combin. Theory Ser. A 128, 132–148 (2014).

    MathSciNet  Article  Google Scholar 

  4. 4.

    N. R. Beaton, A. L. Owczarek and A. Rechnitzer, Exact solution of some quarter plane walks with interacting boundaries, Electr. J. Combin. 26,#P3.53 (2019).

    MathSciNet  Article  Google Scholar 

  5. 5.

    M. Bóna and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb. 14, 291–306 (2010).

    MathSciNet  Article  Google Scholar 

  6. 6.

    M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, Algorithmic probability and combinatorics 1–39, Contemp. Math. 520, Amer. Math. Soc., Providence, RI (2010).

  7. 7.

    M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31, 86–112 (2003).

    MathSciNet  Article  Google Scholar 

  8. 8.

    M.-P. Delest and G. Viennot, Algebraic Languages and Polyominoes Enumeration, Theoret. Comput. Sci. 34, 169–206 (1984).

    MathSciNet  Article  Google Scholar 

  9. 9.

    L. H. Deng, Y. P. Deng and L. W. Shapiro, The Riordan group and symmetric lattice paths, J. Shandong Univ. Nat. Sci. 50, 82–89 (2015).

    MathSciNet  MATH  Google Scholar 

  10. 10.

    E. Deutsch and S. Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, Discrete Appl. Math. 221, 54–66 (2017).

    MathSciNet  Article  Google Scholar 

  11. 11.

    E. Deutsch and S. Elizalde, A bijection between bargraphs and Dyck paths, Discrete Appl. Math. 251C, 342–346 (2018).

    MathSciNet  MATH  Google Scholar 

  12. 12.

    E. Deutsch and S. Elizalde, The degree of asymmetry of sequences. arXiv:2107.06188.

  13. 13.

    M. Drmota and M. Soria, Images and preimages in random mappings, SIAM J. Discrete Math. 10, 246–269 (1997).

    MathSciNet  Article  Google Scholar 

  14. 14.

    S. Elizalde, Bijections for pairs of non-crossing lattice paths and walks in the plane, European J. Combin. 49, 25–41 (2015).

    MathSciNet  Article  Google Scholar 

  15. 15.

    S. Elizalde, Measuring symmetry in lattice paths and partitions, Sém. Lothar. Combin. 84B.26, 12 pp (2020).

  16. 16.

    S. Elizalde and M. Rubey, Symmetries of statistics on lattice paths between two boundaries, Adv. Math. 287, 347–388 (2016).

    MathSciNet  Article  Google Scholar 

  17. 17.

    S. Feretić, A perimeter enumeration of column-convex polyominoes, Discrete Math. Theor. Comput. Sci. 9, 57–84 (2007).

    MathSciNet  MATH  Google Scholar 

  18. 18.

    M. Fisher, Walks, walls, wetting, and melting, J. Statist. Phys. 34, 667–729 (1984).

    MathSciNet  Article  Google Scholar 

  19. 19.

    P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), 125–161.

    MathSciNet  Article  Google Scholar 

  20. 20.

    D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, Combinatoire énumérative 112–125, Lecture Notes in Math. 1234, Springer, Berlin (1986).

  21. 21.

    A. Guttmann, A. Owczarek and X. Viennot, Vicious walkers and Young tableaux I: Without walls, J. Phys. A 31, 8123–8135 (1998).

    MathSciNet  Article  Google Scholar 

  22. 22.

    V. E. Hoggatt Jr. and M. Bicknell, Palindromic Compositions, Fibonacci Quarterly 13, 350–356 (1975).

    MathSciNet  MATH  Google Scholar 

  23. 23.

    E. J. Janse van Rensburg, Pulled directed lattice paths, J. Phys. A: Math. Theor. 43, 215001 (2010).

    MathSciNet  Article  Google Scholar 

  24. 24.

    R. Jungen, Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence, Comment. Math. Helv. 3, 266–306 (1931).

    MathSciNet  Article  Google Scholar 

  25. 25.

    M. Kauers and R. Yatchak, Walks in the quarter plane with multiple steps, Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc., 25–36 (2015).

  26. 26.

    L. Lipshitz, The diagonal of a D-finite power series is D-finite, J. Algebra 113, 373–378 (1988).

    MathSciNet  Article  Google Scholar 

  27. 27.

    P. A. MacMahon, Partitions of numbers whose graphs possess symmetry, Trans. Cambridge Philos. Soc. 17, 149–170 (1899).

    MATH  Google Scholar 

  28. 28.

    E. Orlandini, M. C. Tesi and S. G. Whittington, Adsorption of a directed polymer subject to an elongational force, J. Phys. A: Math. Gen. 37, 1535–1543 (2004).

    MathSciNet  Article  Google Scholar 

  29. 29.

    G. Pólya, On the Number of Certain Lattice Polygons, J. Combin. Th. 6, 102–105 (1969).

    MathSciNet  Article  Google Scholar 

  30. 30.

    T. Prellberg and R. Brak, Critical exponents from nonlinear functional equations for partially directed cluster models, J. Stat. Phys. 78, 701–730 (1995).

    Article  Google Scholar 

  31. 31.

    L. W. Shapiro, A Catalan triangle, Discrete Math. 14, 83–90 (1976).

    MathSciNet  Article  Google Scholar 

  32. 32.

    R. P. Stanley, Enumerative Combinatorics, vol. 1, Second Edition, Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, Cambridge (2012).

  33. 33.

    R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999).

  34. 34.

    R. Tabbara, A. L. Owczarek and A. Rechnitzer, An exact solution of two friendly interacting directed walks near a sticky wall, J. Phys. A: Math. Theor. 47, 015202 (2014).

    MathSciNet  Article  Google Scholar 

  35. 35.

    V. Roitner, Contacts and returns in 2-watermelons without wall, Bull. Inst. Combin. Appl. 89, 75–92 (2020).

    MathSciNet  MATH  Google Scholar 

  36. 36.

    R. Simion, A type-\(B\) associahedron, Adv. in Appl. Math. 30, 2–25 (2003).

    MathSciNet  Article  Google Scholar 

  37. 37.

    R. P. Stanley, Symmetries of plane partitions, J. Combin. Theory Ser. A 43, 103–113 (1986).

    MathSciNet  Article  Google Scholar 

  38. 38.

    The On-Line Encyclopedia of Integer Sequences, published electronically at

  39. 39.

    M. Wallner, A half-normal distribution scheme for generating functions, European J. Combin. 87, 103138 (2020).

    MathSciNet  Article  Google Scholar 

Download references


The author thanks Emeric Deutsch for suggesting the notion of degree of asymmetry of combinatorial objects, Alin Bostan for helpful discussions about D-finiteness, and two reviewers for insightful advice on improving the content and the presentation of this paper.

Author information



Corresponding author

Correspondence to Sergi Elizalde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Frédérique Bassino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elizalde, S. The Degree of Symmetry of Lattice Paths. Ann. Comb. (2021).

Download citation


  • Symmetry
  • Dyck path
  • Partition
  • Bargraph
  • Lattice walk

Mathematics Subject Classification

  • 05A15
  • 05A19
  • 05A17