Duality of Graded Graphs Through Operads

Abstract

Pairs of graded graphs, together with the Fomin property of graded graph duality, are rich combinatorial structures providing among other a framework for enumeration. The prototypical example is the one of the Young graded graph of integer partitions, allowing us to connect number of standard Young tableaux and numbers of permutations. Here, we use operads, algebraic devices abstracting the notion of composition of combinatorial objects, to build pairs of graded graphs. For this, we first construct a pair of graded graphs where vertices are syntax trees, the elements of free nonsymmetric operads. This pair of graphs is dual for a new notion of duality called \(\phi \)-diagonal duality, similar to the ones introduced by Fomin. We also provide a general way to build pairs of graded graphs from operads, wherein underlying posets are analogous to the Young lattice. Some examples of operads leading to new pairs of graded graphs involving integer compositions, Motzkin paths, and m-trees are considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998. xii+301.

  2. 2.

    A. Bjöner and Stanley R. P. An analogue of Young’s lattice for compositions. arXiv:math/0508043v4, 2005.

  3. 3.

    F. Chapoton. On some anticyclic operads. Algebr. Geom. Topol., 5:53–69, 2005.

  4. 4.

    V. Dotsenko. Compatible associative products and trees. Algebr. Number Theory, 3(5):567–586, 2009.

  5. 5.

    S. Fomin. Duality of graded graphs. J. Algebr. Comb., 3(4):357–404, 1994.

  6. 6.

    J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook graphs of the symmetric groups. Canadian J. Math., 6:316–324, 1954.

  7. 7.

    S. Giraudo. Combinatorial operads from monoids. J. Algebr. Comb., 41(2):493–538, 2015.

  8. 8.

    S. Giraudo. Pluriassociative algebras I: The pluriassociative operad. Adv. Appli. Math., 77:1–42, 2016.

  9. 9.

    S. Giraudo. Nonsymmetric Operads in Combinatorics. Springer Nature Switzerland AG, 2018. ix+172.

  10. 10.

    S. Giraudo. Colored operads, series on colored operads, and combinatorial generating systems. Discrete Math., 342(6):1624–1657, 2019.

  11. 11.

    F. Hivert, J.-C. Novelli, and J.-Y. Thibon. The Algebra of Binary Search Trees. Theor. Comput. Sci., 339(1):129–165, 2005.

  12. 12.

    D. Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms. Addison Wesley Longman, 3rd edition, 1997. xx+650.

  13. 13.

    D. Knuth. The Art of Computer Programming, Sorting and Searching, volume 3. Addison Wesley, 2nd edition, 1998.

  14. 14.

    J.-L. Loday. Dialgebras. In Dialgebras and related operads, volume 1763 of Lect. Notes Math., pages 7–66. Springer, Berlin, 2001.

  15. 15.

    J.-L. Loday. Generalized Bialgebras and Triples of Operads. Astérisque, 320:1–114, 2008.

  16. 16.

    J.-L. Loday and M. Ronco. Algèbres de Hopf colibres. C. R. Math., 337(3):153–158, 2003.

  17. 17.

    J.-L. Loday and M. Ronco. On the structure of cofree Hopf algebras. J. Reine Angew. Math., 592:123–155, 2006.

  18. 18.

    T. F. Lam and M. Shimozono. Dual graded graphs for Kac-Moody algebras. Algebr. Number Theory, 1(4):451–488, 2007.

  19. 19.

    J.-L. Loday and B. Vallette. Algebraic Operads, volume 346 of Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg, 2012. xxiv+634.

  20. 20.

    M. Méndez. Set Operads in Compbinatorics and Computer Science. Springer International Publishing, 2015. xv+129.

  21. 21.

    J. Nzeutchap. Graded Graphs and Fomin’s \(r\)-correspondences associated to the Hopf Algebras of Planar Binary Trees, Quasi-symmetric Functions and Noncommutative Symmetric Functions. Formal Power Series and Algebraic Combinatorics, 2006.

  22. 22.

    B. E. Sagan. The Symmetric Group, volume 203 of Graduate Texts in Mathematics. Springer-Verlag New York, second edition, 2001. Representations, Combinatorial Algorithms, and Symmetric Functions.

  23. 23.

    N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.

  24. 24.

    J. Stasheff. \(H\)-spaces from a homotopy point of view, volume 161 of Lect. Notes in Math. Springer-Verlag, Berlin-New York, 1970. v+95.

  25. 25.

    R. P. Stanley. Differential posets. J. Am. Math. Soc., 1(4):919–961, 1988.

  26. 26.

    R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, second edition, 2011.

  27. 27.

    Terese. Term Rewriting Systems. Cambridge University Press, 2003. 884.

  28. 28.

    D. Yau. Colored Operads. Graduate Studies in Mathematics. American Mathematical Society, 2016.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuele Giraudo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giraudo, S. Duality of Graded Graphs Through Operads. Ann. Comb. 25, 255–305 (2021). https://doi.org/10.1007/s00026-021-00529-4

Download citation

Keywords

  • Poset
  • Lattice
  • Dual graded graph
  • Tree
  • Nonsymmetric operad

Mathematics Subject Classification

  • 05C05
  • 06A07
  • 05C25
  • 18D50