Abstract
Let \(\gamma (G)\) and \(\gamma _{t}(G)\) be the domination number and the total domination number of a graph G, respectively, and let \(\gamma _g(G)\) and \(\gamma _{tg}(G)\) be the game domination number and the game total domination number of G, respectively. Then, G is \(\gamma _g\)-perfect (resp. \(\gamma _{tg}\)-perfect) if every induced subgraph F of G satisfies \(\gamma _g(F)=\gamma (F)\) (resp. \(\gamma _{tg}(F)=\gamma _t(F)\)). A recursive characterization of \(\gamma _g\)-perfect graphs is derived. The characterization yields a polynomial recognition algorithm for \(\gamma _g\)-perfect graphs. It is proved that every minimally \(\gamma _g\)-imperfect graph has domination number 2. All minimally \(\gamma _g\)-imperfect triangle-free graphs are determined. It is also proved that \(\gamma _{tg}\)-perfect graphs are precisely \(\overline{2P_3}\)-free cographs.
This is a preview of subscription content, access via your institution.




References
- 1.
J. D. Alvarado, S. Dantas, D. Rautenbach, Perfectly relating the domination, total domination, and paired domination numbers of a graph, Discrete Math. 338 (2015) 1424–1431.
- 2.
S. Arumugam, Bibin K. Jose, Cs. Bujtás, Zs. Tuza, Equality of domination and transversal numbers in hypergraphs, Discrete Appl. Math. 161 (2013) 1859–1867.
- 3.
G. Boruzanlı Ekinci, Cs. Bujtás, Bipartite graphs with close domination and \(k\)-domination numbers, Open Math. 18 (2020) 873–885.
- 4.
B. Brešar, S. Klavžar, D.F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979–991.
- 5.
Cs. Bujtás, On the game total domination number, Graphs Combin. 34 (2018) 415–425.
- 6.
Cs. Bujtás, M.A. Henning, Zs. Tuza, Transversal game on hypergraphs and the \(\frac{3}{4}\)-conjecture on the total domination game, SIAM J. Discrete Math. 30 (2016) 1830–1847.
- 7.
Cs. Bujtás, General upper bounds on the game domination number, Discrete Appl. Math. 285 (2020) 530–538.
- 8.
E. Camby, F. Plein, A note on an induced subgraph characterization of domination perfect graphs, Discrete Appl. Math. 217 (2017) 711–717.
- 9.
M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51–229.
- 10.
D. G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163–174.
- 11.
P. Dorbec, G. Košmrlj, G. Renault, The domination game played on unions of graphs, Discrete Math. 338 (2015) 71–79.
- 12.
M.A. Henning, S. Jäger, D. Rautenbach, Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275–285.
- 13.
M.A. Henning, S. Klavžar, D.F. Rall, Total version of the domination game, Graphs Combin. 31 (2015) 1453–1462.
- 14.
M.A. Henning, S. Klavžar, D.F. Rall, The \(4/5\) upper bound on the game total domination number, Combinatorica 37 (2017) 223–251.
- 15.
M. A. Henning, S. Klavžar, D. F. Rall, Game total domination critical graphs, Discrete Appl. Math. 250 (2018) 28–37.
- 16.
M. A. Henning, A. Yeo, Total Domination in Graphs, Springer, New York, 2013.
- 17.
V. Iršič, Effect of predomination and vertex removal on the game total domination number of a graph, Discrete Appl. Math. 257 (2019) 216–225.
- 18.
T. James, S. Klavžar, A. Vijayakumar, The domination game on split graphs, Bull. Aust. Math. Soc. 99 (2019) 327–337.
- 19.
W.B. Kinnersley, D.B. West, R. Zamani, Extremal problems for game domination number, SIAM J. Discrete Math. 27 (2013) 2090–2107.
- 20.
S. Klavžar, G. Košmrlj, S. Schmidt, On graphs with small game domination number, Appl. Anal. Discrete Math. 10 (2016) 30–45.
- 21.
S. Klavžar, D.F. Rall, Domination game and minimal edge cuts, Discrete Math. 342 (2019) 951–958.
- 22.
L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253–267.
- 23.
A.J. Nadjafi-Arani, M. Siggers, H. Soltani, Charactertisation of forests with trivial game domination numbers, J. Comb. Optim. 32 (2016) 800–811.
- 24.
W. Ruksasakchai, K. Onphaeng, C. Worawannotai, Game domination numbers of a disjoint union of paths and cycles, Quaest. Math. 42 (2019) 1357–1372.
- 25.
D. P. Sumner, J. I. Moore, Domination perfect graphs, Notices Amer. Math. Soc. 26 (1979) A-569.
- 26.
K. Xu, X. Li, On domination game stable graphs and domination game edge-critical graphs, Discrete Appl. Math. 250 (2018) 47–56.
- 27.
I. E. Zverovich, V. E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (1995) 375–395.
Acknowledgements
We are grateful to Gašper Košmrlj for providing us with his software that computes game domination invariants. We acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0297 and projects J1-9109, J1-1693, N1-0095, N1-0108).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Communicated by Torsten Ueckerdt
Rights and permissions
About this article
Cite this article
Bujtás, C., Iršič, V. & Klavžar, S. Perfect Graphs for Domination Games. Ann. Comb. (2021). https://doi.org/10.1007/s00026-021-00523-w
Received:
Accepted:
Published:
Keywords
- Domination game
- Total domination game
- Perfect graph for domination game
- Triangle-free graph
- Cograph
Mathematics Subject Classification
- 05C57
- 05C69
- 68Q25