On a Weighted Generalization of Kendall’s Tau Distance


We introduce a metric on the set of permutations of given order, which is a weighted generalization of Kendall’s \(\tau \) rank distance and study its properties. Using the edge graph of a permutohedron, we give a criterion which guarantees that a permutation lies metrically between another two fixed permutations. In addition, the conditions under which four points from the resulting metric space form a pseudolinear quadruple were found.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Aboulker, P., Chen, X., Huzhang, G., Kapadia, R., Supko, C.: Lines, betweenness and metric spaces. Discrete Comput. Geom. 56(2), 427–448 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Brandenburg, F.J., Gleißner, A., Hofmeier, A.: Comparing and aggregating partial orders with Kendall tau distances. Discrete Math. Algorithms Appl. 5(2), 88–99 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Buzaglo, S., Etzion, T.: Perfect permutation codes with the Kendall’s \(\tau \)-metric. In: 2014 IEEE International Symposium on Information Theory, pp. 2391–2395. IEEE, Honolulu, HI, USA (2014)

  4. 4.

    Chee, Y.M., Vu, V.K.: Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics. In: 2014 IEEE International Symposium on Information Theory, pp. 2959–2963. IEEE, Honolulu, HI, USA (2014)

  5. 5.

    Cicirello, V.A.: Kendall tau sequence distance: Extending Kendall tau from ranks to sequences. EAI Endorsed Trans. Ind. Netw. and Intell. Syst. 7(23), 1–12 (2020)

    Google Scholar 

  6. 6.

    Deza, M., Huang, T.: Metrics on permutations, a survey. J. Comb. Inf. Syst. Sci. 23, 173–185 (1998)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Deza, M.M., Deza, E.: Encyclopedia of distances, fourth edn. Springer, Berlin (2016)

    Google Scholar 

  8. 8.

    Dovgoshei, A., Petrov, E.: Ptolemaic spaces. Siberian Math. J. 52(2), 222–229 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Farnoud, F., Touri, B., Milenkovic, O.: Novel distance measures for vote aggregation. arXiv preprint arXiv:1203.6371 (2012)

  10. 10.

    Fischer, S., Schumann, A., Schnurr, A.: Ordinal pattern dependence between hydrological time series. J. Hydrol. 548, 536–551 (2017)

    Article  Google Scholar 

  11. 11.

    Keller, K., Wittfeld, K.: Distances of time series components by means of symbolic dynamics. Internat. J. Bifur. Chaos 14, 693–703 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Kendall, M.: A new measure of rank correlation. Biometrika 30(1–2), 81–89 (1938)

    MATH  Article  Google Scholar 

  13. 13.

    Kruskal, W.H.: Ordinal measures of association. J. Amer. Statist. Assoc. 53(284), 814–861 (1958)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 571–580. ACM, New York, NY, USA (2010)

  15. 15.

    Lee, P.H., Yu, P.L.H.: Distance-based tree models for ranking data. Comput. Statist. Data Anal. 54(6), 1672–1682 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Lee, P.H., Yu, P.L.H.: Mixtures of weighted distance-based models for ranking data with applications in political studies. Comput. Statist. Data Anal. 56(8), 2486–2500 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Liu, C., Han, J.: Failure proximity: a fault localization-based approach. In: Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of software engineering, pp. 46–56. Association for Computing Machinery, New York, NY, USA (2006)

  18. 18.

    Liu, C., Zhang, X., Han, J.: A systematic study of failure proximity. IEEE Trans. on Softw. Eng. 34(6), 826–843 (2008)

    Article  Google Scholar 

  19. 19.

    Menger, K.: Untersuchungen über allgemeine Metrik. Math. Ann. 100(1), 75–163 (1928)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Ouyang, G., Dang, C., Richards, D.A., Li, X.: Ordinal pattern based similarity analysis for eeg recordings. Clin. Neurophysiol. 121(5), 694–703 (2010)

    Article  Google Scholar 

  21. 21.

    Shieh, G.S.: A weighted Kendall’s tau statistic. Statist. Probab. Lett. 39(1), 17–24 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Spearman, C.: The proof and measurement of association between two things. Amer. J. of Psych. 15(1), 72–101 (1904)

    Article  Google Scholar 

  23. 23.

    Venkatraghavan, V., Bron, E.E., Niessen, W.J., Klein, S.: A discriminative event based model for Alzheimer’s disease progression modeling. In: Information Processing in Medical Imaging, pp. 121–133. Springer International Publishing, Cham (2017)

  24. 24.

    Wang, J., Shang, P., Shi, W., Cui, X.: Dissimilarity measure based on ordinal pattern for physiological signals. Commun. Nonlinear Sci. Numer. Simul. 37, 115–124 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Ziegler, G.: Lectures on polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag, New York (1995)

    Google Scholar 

Download references


The authors thank the anonymous referees for their remarks which considerably improved this article.

Author information



Corresponding author

Correspondence to Evgeniy Petrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Evgeniy Petrov was supported by H2020-MSCA-RISE-2014, Project number 645672 (AMMODIT: “Approximation Methods for Molecular Modelling and Diagnosis Tools”).

Communicated by Kolja Knauer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piek, A.B., Petrov, E. On a Weighted Generalization of Kendall’s Tau Distance. Ann. Comb. (2021). https://doi.org/10.1007/s00026-020-00519-y

Download citation


  • Kendall’s tau distance
  • Metric space
  • Permutation
  • Permutohedron

Mathematics Subject Classification

  • 54E35
  • 05A05
  • 05C35