## Abstract

The main idea of this paper is to provide an algebraic algorithm for constructing symmetric graphs with optimal fault tolerance. For this purpose, we use normal edge-transitive Cayley graphs and the idea of reconstruction question posed by Praeger to present a special factorization of groups which induces a graphical decomposition of normal edge-transitive Cayley graphs to simpler normal edge-transitive Cayley graphs. Then as a consequence of our results, we continue the study of normal edge-transitive Cayley graphs of abelian groups and we show that knowing normal edge-transitive Cayley graphs of abelian *p*-groups, we can determine all normal edge-transitive Cayley graphs of abelian groups.

This is a preview of subscription content, log in to check access.

## References

- 1.
S.B. Akers, and B. Krishnamurthy,

*A group theoretic model for symmetric interconnection networks*, Proceedings of International Conference on Parallel Processing (1986), 213–216. - 2.
M. Alaeiyan,

*On normal edge-transitive Cayley graphs of some abelian groups*, Southeast Asian Bulletin of Mathematics**33**(2009), 13–19. - 3.
S. Burris, and H.P. Sankappanavar, “A Course in Universal Algebra”, Springer New York, 2011.

- 4.
X. Caicedo,

*Subdirect Decomposition of*\(n\)*-Chromatic Graphs*, Journal of Algebraic Combinatorics**8**(1998), 157–168. - 5.
B.P. Corr, and C.E. Praeger,

*Normal edge-transitive Cayley graphs of Frobenius groups*, Journal of Algebraic Combinatorics**42**(3) (2015), 803–827. - 6.
M.R. Darafsheh, and A. Assari,

*Normal edge-transitive Cayley graphs on non-abelian groups of order 4p, where p is a prime number*, Science China Mathematics**56**(2013), 213–219. - 7.
Y.Q. Feng, D.J. Wang, and J.L. Chen,

*A family of non-normal Cayley digraphs*, Acta Mathematica Sinica**17**(2001), 147–152. - 8.
A. Ganesan,

*Cayley graphs and symmetric interconnection networks*, In Proceedings of the Pre-Conference Workshop on Algebraic and Applied Combinatorics (31st Annual Conference of the Ramanujan Mathematical Society), Trichy, Tamilnadu, India, 118–170. - 9.
C. Godsil,

*On the full automorphism group of a graph*, Combinatorica**1**(3) (1981), 243–256. - 10.
P.C. Houlis, “Quotients of Normal edge-transitive Cayley graphs”, University of Western Austrailia, 1998.

- 11.
W. Imrich, A. Iranmanesh, S. Klavžar and A. Soltani,

*Edge-Transitive Lexicographic and Cartesian Products*, Discussiones Mathematicae Graph Theory**36**(4) (2016), 857–865. - 12.
A.V. Kelarev and C.E. Praeger,

*On transitive Cayley graphs of groups and semigroups*, European Journal of Combinatorics**24**(1) (2003), 59–72. - 13.
B. Khosravi,

*The endomorphism monoids and automorphism groups of Cayley graphs of semigroups*, Semigroup Forum**95**(1) (2017), 179–191. - 14.
B. Khosravi and C. E. Praeger, Normal edge-transitive Cayley graphs and Frattini-like subgroups, (preprint).

- 15.
M. Kilp, U. Knauer, and A. Mikhalev, “Monoids, Acts and Categories”, Walter de Gruyter, Berlin, New York, 2000.

- 16.
U. Knauer,

*Algebraic Graph Theory. Morphisms, Monoids and Matrices*, De Gruyter, Berlin and Boston, 2011. - 17.
C.H. Li,

*Finite edge-transitive Cayley graphs and rotary Cayley maps*, Transactions of the American Mathematical Society**358**(10) (2006), 4605–4635. - 18.
C.H. Li, Z. Liu, and Z.P. Lu,

*The edge-transitive tetravalent Cayley graphs of square-free order*, Discrete Mathematics**312**(2012), 1952–1967. - 19.
W. Mader,

*Minimale n-fach zusammenhangende Graphen*, Mathematische Annalen**191**(1971), 21–28. - 20.
M.G. Megrelishvili,

*Free topological G-groups*, New Zealand Journal of Mathematics**25**(1) (1996), 59–72. - 21.
C.E. Praeger,

*An O’Nan-Scott Theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs*, Journal of the London Mathematical Society**47**(2) (1993), 227–239. - 22.
C.E. Praeger,

*Finite quasiprimitive graphs*, in Surveys in Combinatorics, 1997, (R.A. Bailey, Editor), London Mathematical Society Lecture Notes in Mathematics**241**Cambridge University Press, Cambridge, 1997), 65–85. - 23.
C.E. Praeger,

*Finite Normal Edge-transitive Cayley graphs*, Bulletin of the Australian Mathematical Society**60**(1999), 207–220. - 24.
S.T. Schibell, and R.M. Stafford,

*Processor interconnection networks from Cayley graphs*, Discrete Applied Mathematics**40**(1992), 333–357. - 25.
C. Wang, D. Wang, and M. Xu,

*Normal Cayley graphs of finite groups*, Science in China Series A: Mathematics**41**(3) (1998), 242–251. - 26.
X. Wang, and Y. Feng,

*Tetravalent half-edge-transitive graphs and non-normal Cayley graphs*, Journal of Graph Theory**70**(2) (2012), 197–213. - 27.
M.E. Watkins,

*Connectivity of transitive graphs*, Journal of Combinatorial Theory**8**(1970), 23–29. - 28.
H. Whitney,

*Congruent graphs and the connectivity of graphs*, American Journal of Mathematics**54**(1932), 150–168. - 29.
M.Y. Xu,

*Automorphism groups and isomorphisms of Cayley digraphs*, Discrete Mathematics**182**(1998), 309–319. - 30.
M.Y. Xu, and M. J. Ma,

*Algebraic properties and panconnectivity of folded hyper-cubes*, Ars Combinatoria**95**(2010), 179–186. - 31.
Y. Xu,

*On constructing normal and non-normal Cayley graphs*, Discrete Mathematics**340**(12) (2017), 2972–2977. - 32.
J. Zhou, and Y. Li,

*Cubic non-normal Cayley graphs of order*\(4p^2\), Discrete Mathematics**312**(12-13) (2012), 1940–1946.

## Author information

### Affiliations

### Corresponding author

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

## About this article

### Cite this article

Khosravi, B., Khosravi, B. & Khosravi, B. On Reconstruction of Normal Edge-Transitive Cayley Graphs.
*Ann. Comb.* (2020). https://doi.org/10.1007/s00026-020-00514-3

Received:

Accepted:

Published:

### Mathematics Subject Classification

- Primary 05C25
- Secondary 08A30
- 08A35

### Keywords

- Normal edge-transitive Cayley graphs
- Factorization of groups
- Optimal fault tolerance