A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions

Abstract

We define a new basis of the algebra of quasi-symmetric functions by lifting the cycle-index polynomials of symmetric groups to noncommutative polynomials with coefficients in the algebra of free quasi-symmetric functions, and then projecting the coefficients to QSym. By duality, we obtain a basis of noncommutative symmetric functions, for which a product formula and a recurrence in the form of a combinatorial complex are obtained. This basis allows to identify noncommutative symmetric functions with the quotient of \(\mathrm{FQSym}\) induced by the pattern-replacement relation \(321\equiv 231\) and \(312\equiv 132\).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki, A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, Canad. J. Math. 66 (2014), 525–565.

    MathSciNet  Article  Google Scholar 

  2. 2.

    A. Björner and M. Wachs, \(q\)-hook-length formulas for forests, J. Combinatorial Theory, Ser. A 52 165–187 (1989)

    MathSciNet  Article  Google Scholar 

  3. 3.

    L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, 1968, 1–7.

  4. 4.

    V. Fazel-Rezai, Equivalence Classes of Permutations Modulo Replacements Between 123 and Two-Integer Patterns. arXiv:1309.4802, 2013.

  5. 5.

    I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112, 1995, 218–348.

    MathSciNet  Article  Google Scholar 

  6. 6.

    D. Grinberg, Private communication, 2017.

  7. 7.

    F. Hivert, J.-C. Novelli, and J.-Y. Thibon, The algebra of binary search trees, Theoretical Computer Science 339 (2005), 129–165.

    MathSciNet  Article  Google Scholar 

  8. 8.

    F. Hivert, J.-C. Novelli, L. Tevlin, and J.-Y. Thibon, Permutation statistics related to a class of noncommutative symmetric functions and generalizations of the Genocchi numbers, Selecta Math. (N.S.) 15 (2009), no. 1, 105–119.

    MathSciNet  Article  Google Scholar 

  9. 9.

    D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets, Intern. J. Alg. Comput. 7 no. 2, (1997), 181–264.

  10. 10.

    D. Krob and J.-Y.Thibon, Noncommutative symmetric functions IV : Quantum linear groups and Hecke algebras at \(q=0\), J. Alg. Comb. 6 (1997), 339–376.

    MathSciNet  Article  Google Scholar 

  11. 11.

    W. Kuszmaul, Counting Permutations Modulo Pattern-Replacement Equivalences for Three-Letter Patterns, Electronic Journal of Combinatorics 20 (4) (2013), #P10. arXiv:1304.5667v2.

  12. 12.

    W. Kuszmaul and Z. Zhou, Equivalence Classes in \(S_n\) for Three Families of Pattern-Replacement Relations, MIT PRIMES, 2013. http://web.mit.edu/primes/materials/2012/Kuszmaul-Zhou.pdf+

  13. 13.

    A. Lascoux, B. Leclerc, and J.-Y. Thibon, Crystal graphs and \(q\)-analogues of weight multiplicities for the root system \(A_n\), Lett. Math. Phys. 35 (1995), 359–374.

    MathSciNet  Article  Google Scholar 

  14. 14.

    P. Littelmann, A plactic algebra for semisimple Lie algebras, Adv. Math., 124 (1996), 312–331.

    MathSciNet  Article  Google Scholar 

  15. 15.

    S. Linton, J. Propp, T. Roby, and J. West, Equivalence Relations of Permutations Generated by Constrained Transpositions. DMTCS Proceedings, North America, July 2010. http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAN0168+

  16. 16.

    J.-L. Loday, Exponential series without denominators, Lie Theory and its Applications in Physics, IX International Workshop 2013. https://doi.org/10.1007/978-4-431-54270-4_7.

  17. 17.

    M. Lothaire, Combinatorics on Words, 2nd Ed., Cambridge University press, 1997.

    Google Scholar 

  18. 18.

    I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, Oxford 1995.

    Google Scholar 

  19. 19.

    J.-C. Novelli, J.-Y. Thibon, and F. Toumazet, Noncommutative Bell polynomials and the dual immaculate basis, Algebraic Combinatorics 1 (2018) no. 5, 653–676.

    MathSciNet  Article  Google Scholar 

  20. 20.

    J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of \(m\)-permutations, \((m+1)\)-ary trees, and \(m\)-parking functions, Advances in Applied Mathematics 117 (2020), 102019.

    MathSciNet  Article  Google Scholar 

  21. 21.

    J. Nzeutchap, Correspondances de Schensted-Fomin, Algèbres de Hopf et graphes gradués en dualité, Thèse de Doctorat, Université de Rouen, 2008.

  22. 22.

    A. Pierrot, D. Rossin, and J. West, Adjacent transformations in permutations. FPSAC 2011 Proceedings, Discrete Math. Theor. Comput. Sci. Proc., 2011. http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAO0167/3638

  23. 23.

    R. Schimming and S. Z. Rida, Noncommutative Bell polynomials, Internat. J. Algebra Comput. 6 (1996), 635–644.

    MathSciNet  Article  Google Scholar 

  24. 24.

    R. Stanley, An equivalence relation on the symmetric group and multiplicity-free flag \(h\)-vectors, Journal of Combinatorics 3 (2012) no. 3, 277–298. arXiv:1208.3540, 2012.

  25. 25.

    The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Thibon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novelli, J., Thibon, J. & Toumazet, F. A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions. Ann. Comb. (2020). https://doi.org/10.1007/s00026-020-00504-5

Download citation

Keywords

  • Noncommutative symmetric functions
  • Quasi-symmetric functions
  • Dendriform algebras

Mathematics Subject Classification

  • 16T30
  • 05E05
  • 05A18