On Witten’s Extremal Partition Functions

  • Ken OnoEmail author
  • Larry Rolen


In his famous 2007 paper on three-dimensional quantum gravity, Witten defined candidates for the partition functions
$$\begin{aligned} Z_k(q)=\sum _{n=-k}^{\infty }w_k(n)q^n \end{aligned}$$
of potential extremal conformal field theories (CFTs) with central charges of the form \(c=24k\). Although such CFTs remain elusive, he proved that these modular functions are well defined. In this note, we point out several explicit representations of these functions. These involve the partition function p(n), Faber polynomials, traces of singular moduli, and Rademacher sums. Furthermore, for each prime \(p\le 11\), the p series \(Z_k(q)\), where \(k\in \{1, \dots , p-1\} \cup \{p+1\},\) possess a Ramanujan congruence. More precisely, for every non-zero integer n we have that
$$\begin{aligned} w_k(pn) \equiv 0{\left\{ \begin{array}{ll} \pmod {2^{11}}\ \ \ \ &{}{\mathrm{if}}\ p=2,\\ \pmod {3^5} \ \ \ \ &{}{\mathrm{if}}\ p=3,\\ \pmod {5^2}\ \ \ \ &{}{\mathrm{if}}\ p=5,\\ \pmod {p} \ \ \ \ &{}{\mathrm{if}}\ p=7, 11. \end{array}\right. } \end{aligned}$$


Extremal partition function Modular forms Faber polynomials 

Mathematics Subject Classification

05A17 11Pxx 11Fxx 



  1. 1.
    Andrews, G.E., Paule, P., Riese, A.: MacMahon’s partition analysis III: the Omega package. European J. Combin. 22(7), 887–904 (2001)Google Scholar
  2. 2.
    Asai, T., Kaneko, M., Ninomiya, H.: Zeros of certain modular functions and an application. Comment. Math. Univ. St. Paul. 46(1), 93–101 (1997)Google Scholar
  3. 3.
    Benjamin, N., Kachru, S., Ono, K., Rolen L.: Black holes and class groups. Res. Math. Sci. 5, 43 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society Colloquium Publications, 64. American Mathematical Society, Providence, RI (2017)Google Scholar
  5. 5.
    Bruinier, J.H., Ono, K.: Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms. Adv. Math. 246, 198–219 (2013)Google Scholar
  6. 6.
    Bruinier, J.H., Ono, K., Sutherland, A.V.: Class polynomials for nonholomorphic modular functions. J. Number Theory 161, 204–229 (2016)Google Scholar
  7. 7.
    Elkies, N., Ono, K., Yang, T.: Reduction of CM elliptic curves and modular function congruences. Int. Math. Res. Not. (44), 2695–2707 (2005)Google Scholar
  8. 8.
    Gannon, T.: Moonshine Beyond the Monster. The Bridge Connecting Algebra, Modular Forms and Physics. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2006)Google Scholar
  9. 9.
    Höhn, G.: Selbstduale Vertexoperatorsuperalgebren und das Babymonster. Ph.D. Thesis (Bonn 1995), Bonner Math. Schriften 286, 1–85 (1996)Google Scholar
  10. 10.
    Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and \(q\)-Series. CBMS Regional Conference Series in Mathematics, Vol. 102. Amer. Math. Soc., Providence, RI (2004)Google Scholar
  11. 11.
    Witten, E.: Three-dimensional gravity revisited. arXiv:0706.3359 (2007)
  12. 12.
    Zagier, D.: Traces of singular moduli. In: Bogomolov, F., Katzarkov, L. (eds.) Motives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), pp. 211–244. Int. Press Lect. Ser., 3, I, Int. Press, Somerville, MA (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations