Skip to main content

Algebraic Independence of Sequences Generated by (Cyclotomic) Harmonic Sums

Abstract

Indefinite nested sums are important building blocks to assemble closed forms for combinatorial counting problems or for problems that arise, e.g., in particle physics. Concerning the simplicity of such formulas an important subtask is to decide if the arising sums satisfy algebraic relations among each other. Interesting enough, algebraic relations of such formal sums can be derived from combinatorial quasi-shuffle algebras. We will focus on the following question: can one find more relations if one evaluates these sums to sequences and looks for relations within the ring of sequences. In this article we consider the sequences of the rather general class of (cyclotomic) harmonic sums and show that their relations coincide with the relations found by their underlying quasi-shuffle algebra. In order to derive this result, we utilize the quasi-shuffle algebra and construct a difference ring with the following property: (1) the generators of the difference ring represent (cyclotomic) harmonic sums, (2) they generate within the ring all (cyclotomic) harmonic sums, and (3) the sequences produced by the generators are algebraically independent among each other. This means that their sequences do not satisfy any polynomial relations. The proof of this latter property is obtained by difference ring theory and new symbolic summation results. As a consequence, any sequence produced by (cyclotomic) harmonic sums can be formulated within our difference ring in an optimal way: there does not exist a subset of the arising sums in which the sequence can be formulated as polynomial expression.

References

  1. Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics. Master’s thesis, Johannes Kepler University, Linz (2009)

  2. Ablinger, J.: Computer algebra algorithms for special functions in particle physics. PhD thesis, J. Kepler University Linz, Linz (2012)

  3. Ablinger, J.: The package HarmonicSums: Computer algebra and analytic aspects of nested sums. In: Blümlein, J., Marquard, P., Riemann, T. (eds.) Loops and Legs in Quantum Field Theory—LL 2014, pp. 1–10. Elsevier, Zeuthen (2014)

    Google Scholar 

  4. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Haßelhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.: The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function \(f_2(x, q^2)\) and transversity. Nucl. Phys. B 886, 733–823 (2014)

    Article  MATH  Google Scholar 

  5. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The 3-loop pure singlet heavy flavor contributions to the structure function \(f_2(x, q^2)\) and the anomalous dimension. Nucl. Phys. B 890, 48–151 (2015)

    Article  MATH  Google Scholar 

  6. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating three loop ladder and V-topologies for maßive operator matrix elements by computer algebra. Comput. Phys. Comm. 202, 33–112 (2016)

    Article  MATH  Google Scholar 

  7. Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55(11), 112301, (2014)

    MathSciNet  Article  MATH  Google Scholar 

  8. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52(10), 102301 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54(8), 082301 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  10. Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11, 1071–1074 (1971)

    MathSciNet  MATH  Google Scholar 

  11. Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys. 29(6), 7–12 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  12. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proc. ISSAC’94, pp. 169–174. ACM Press, New York, NY (1994)

  13. Blümlein, J.: Analytic continuation of mellin transforms up to two-loop order. Comput. Phys. Commun. 133(1), 76–104 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  14. Blümlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159(1), 19–54 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  15. Blümlein, J.: Structural relations of harmonic sums and mellin transforms up to weight \(w = 5\). Comput. Phys. Commun 180(11), 2218–2249 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  16. Blümlein, J.: Structural relations of harmonic sums and mellin transforms at weight \(w=6\). In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, Vol. 12, pp. 167–187. Amer. Math. Soc., Providence, RI (2010)

    Google Scholar 

  17. Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to twoloop order. Phys. Rev. D 60, 014018 (1999)

    Article  Google Scholar 

  18. Blümlein, J., Moch, S.: Analytic continuation of the harmonic sums for the 3loop anomalous dimensions. Phys. Lett. B 614(12), 53–61 (2005)

    Article  Google Scholar 

  19. Bronstein, M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841–877 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  20. Cohn, R.M.: Difference Algebra. Interscience Publishers, John Wiley & Sons, New YorkLondonSydeny (1965)

    MATH  Google Scholar 

  21. Costermans, C., Enjalbert, J.Y., Minh, H.N., Petitot, M.: Structure and asymptotic expansion of multiple harmonic sums. In: Kauers, M. (ed.) Proc. of IßAC 2005, pp. 100–107. ACM, New York (2005)

  22. Davydychev, A.I., Kalmykov, M.Y.: Maßive Feynman diagrams and inverse binomial sums. Nucl. Phys. B 699(12), 3–64 (2004)

    Article  MATH  Google Scholar 

  23. Fleischer, J., Kotikov, A.V., Veretin, O.L.: Analytic twoloop results for selfenergytype and vertextype diagrams with one nonzero maß. Nuclear Phys. B 547(12), 343–374 (1999)

    Article  Google Scholar 

  24. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symbolic Comput. 27(3), 239–259 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  25. Hoffman, M.: Multiple harmonic series. Pacific J. Math. 152(2), 275–290 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  26. Hoffman, M.: The algebra of multiple harmonic series. J. Algebra 194(2), 477–495 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  27. Hoffman, M.: Quasishuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)

    MathSciNet  Article  Google Scholar 

  28. Karr, M.: Summation in finite terms. J. ACM 28(2), 305–350 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  29. Karr, M.: Theory of summation in finite terms. J. Symbolic Comput. 1(3), 303–315 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  30. Moch, S., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 43(6), 3363–3386 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  31. Nemes, I., Paule, P.: A canonical form guide to symbolic summation. In: Miola, A., Temperini, M. (eds.) Advances in the Design of Symbolic Computation Systems, Texts Monogr. Symbol. Comput., pp. 84–110. Springer, WienNew York (1997)

  32. Paule, P., Schneider, C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359–378 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  33. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A = B\). A K Peters Ltd, Wellesley, MA (1996)

    MATH  Google Scholar 

  34. Petkovšek, M., Zakrajšek, H.: Solving linear recurrence equations with polynomial coefficients. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, TextsMonogr. Symbol. Comput., pp. 259–284. Springer, Vienna (2013)

  35. Prodinger, H., Schneider, C., Wagner, S.: Unfair permutations. European J. Combin. 32(8), 1282–1298 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  36. Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Internat. J. Modern Phys. A 15(5), 725–754 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  37. Schneider, C.: A collection of denominator bounds to solve parameterized linear difference equations in \({\prod \sum}\)-extensions. An. Univ. Timis, oara Ser. Mat. Inform. 42(2), 163–179 (2004)

    MathSciNet  Google Scholar 

  38. Schneider, C.: Symbolic summation aßists combinatorics. Sem. Lothar. Combin. 56, Art. B56b (2006/07)

  39. Schneider, C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43(9), 611–644 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  40. Schneider, C.: Parameterized telescoping proves algebraic independence of sums. Ann. Combin. 14(4), 533–552 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  41. Schneider, C.: Structural theorems for symbolic summation. Appl. Algebra Engrg. Comm. Comput. 21(1), 1–32 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  42. Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, Vol. 12, pp. 285–308. Amer. Math. Soc., Providence, RI (2010)

    Google Scholar 

  43. Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts Monogr. Symbol. Comput., pp. 325–360. Springer-Verlag Wien, Vienna (2013)

  44. Schneider, C.: A streamlined difference ring theory: Indefinite nested sums, the alternating sign and the parameterized telescoping problem. In: Winkler, F. et al. (eds.) Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 15th International Symposium, pp. 26–33. IEEE Computer Society, Washington, DC (2014)

    Google Scholar 

  45. Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials, Applications of Algebra and Number Theory. Lecture Notes in Computer Science (LNCS), Vol. 8942, pp. 157–191. Springer, New York (2015)

    Google Scholar 

  46. Schneider, C.: A difference ring theory for symbolic summation. J. Symbolic. Comput. 72, 82–127 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  47. Schneider, C.: Summation theory II: characterizations of \({R\prod\sum}\)-extensions and algorithmic aspects. J. Symbolic. Comput. 80, 616–664 (2017)

    MathSciNet  Article  Google Scholar 

  48. Schneider, C., Osburn, R.: Gaußian hypergeometric series and supercongruences. Math. Comp. 78(267), 275–292 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Schneider, C., Pemantle, R.: When is 0.999... equal to 1? Amer. Math. Monthly 114(4), 344–350 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  50. van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Lecture Notes in Math., Vol. 1666. Springer-Verlag, Berlin (1997)

  51. Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Internat. J. Modern Phys. A 14(13), 2037–2076 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  52. Weinzierl, S.: Expansion around half-integer values, binomial sums and inverse binomial sums. J. Math. Phys. 45(7), 2656–2673 (2004)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

Open access funding provided by [Johannes Kepler University Linz].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schneider.

Additional information

Supported by the Austrian Science Fund (FWF) grant SFB F50 (F5009-N15).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ablinger, J., Schneider, C. Algebraic Independence of Sequences Generated by (Cyclotomic) Harmonic Sums. Ann. Comb. 22, 213–244 (2018). https://doi.org/10.1007/s00026-018-0381-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-018-0381-5

Mathematics Subject Classification

  • 33F10
  • 68W30
  • 11K31

Keywords

  • harmonic sums
  • cyclotomic harmonic sums
  • quasi-shuffle algebra
  • algebraic independence
  • difference rings
  • \({\Sigma^\ast}\)-extensions
  • ring of sequences
  • difference ring embedding