Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics. Master’s thesis, Johannes Kepler University, Linz (2009)
Ablinger, J.: Computer algebra algorithms for special functions in particle physics. PhD thesis, J. Kepler University Linz, Linz (2012)
Ablinger, J.: The package HarmonicSums: Computer algebra and analytic aspects of nested sums. In: Blümlein, J., Marquard, P., Riemann, T. (eds.) Loops and Legs in Quantum Field Theory—LL 2014, pp. 1–10. Elsevier, Zeuthen (2014)
Google Scholar
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Haßelhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.: The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function \(f_2(x, q^2)\) and transversity. Nucl. Phys. B 886, 733–823 (2014)
Article
MATH
Google Scholar
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The 3-loop pure singlet heavy flavor contributions to the structure function \(f_2(x, q^2)\) and the anomalous dimension. Nucl. Phys. B 890, 48–151 (2015)
Article
MATH
Google Scholar
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating three loop ladder and V-topologies for maßive operator matrix elements by computer algebra. Comput. Phys. Comm. 202, 33–112 (2016)
Article
MATH
Google Scholar
Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55(11), 112301, (2014)
MathSciNet
Article
MATH
Google Scholar
Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52(10), 102301 (2011)
MathSciNet
Article
MATH
Google Scholar
Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54(8), 082301 (2013)
MathSciNet
Article
MATH
Google Scholar
Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11, 1071–1074 (1971)
MathSciNet
MATH
Google Scholar
Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys. 29(6), 7–12 (1989)
MathSciNet
Article
MATH
Google Scholar
Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proc. ISSAC’94, pp. 169–174. ACM Press, New York, NY (1994)
Blümlein, J.: Analytic continuation of mellin transforms up to two-loop order. Comput. Phys. Commun. 133(1), 76–104 (2000)
MathSciNet
Article
MATH
Google Scholar
Blümlein, J.: Algebraic relations between harmonic sums and associated quantities. Comput. Phys. Commun. 159(1), 19–54 (2004)
MathSciNet
Article
MATH
Google Scholar
Blümlein, J.: Structural relations of harmonic sums and mellin transforms up to weight \(w = 5\). Comput. Phys. Commun 180(11), 2218–2249 (2009)
MathSciNet
Article
MATH
Google Scholar
Blümlein, J.: Structural relations of harmonic sums and mellin transforms at weight \(w=6\). In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, Vol. 12, pp. 167–187. Amer. Math. Soc., Providence, RI (2010)
Google Scholar
Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to twoloop order. Phys. Rev. D 60, 014018 (1999)
Article
Google Scholar
Blümlein, J., Moch, S.: Analytic continuation of the harmonic sums for the 3loop anomalous dimensions. Phys. Lett. B 614(12), 53–61 (2005)
Article
Google Scholar
Bronstein, M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841–877 (2000)
MathSciNet
Article
MATH
Google Scholar
Cohn, R.M.: Difference Algebra. Interscience Publishers, John Wiley & Sons, New YorkLondonSydeny (1965)
MATH
Google Scholar
Costermans, C., Enjalbert, J.Y., Minh, H.N., Petitot, M.: Structure and asymptotic expansion of multiple harmonic sums. In: Kauers, M. (ed.) Proc. of IßAC 2005, pp. 100–107. ACM, New York (2005)
Davydychev, A.I., Kalmykov, M.Y.: Maßive Feynman diagrams and inverse binomial sums. Nucl. Phys. B 699(12), 3–64 (2004)
Article
MATH
Google Scholar
Fleischer, J., Kotikov, A.V., Veretin, O.L.: Analytic twoloop results for selfenergytype and vertextype diagrams with one nonzero maß. Nuclear Phys. B 547(12), 343–374 (1999)
Article
Google Scholar
Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symbolic Comput. 27(3), 239–259 (1999)
MathSciNet
Article
MATH
Google Scholar
Hoffman, M.: Multiple harmonic series. Pacific J. Math. 152(2), 275–290 (1992)
MathSciNet
Article
MATH
Google Scholar
Hoffman, M.: The algebra of multiple harmonic series. J. Algebra 194(2), 477–495 (1997)
MathSciNet
Article
MATH
Google Scholar
Hoffman, M.: Quasishuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)
MathSciNet
Article
Google Scholar
Karr, M.: Summation in finite terms. J. ACM 28(2), 305–350 (1981)
MathSciNet
Article
MATH
Google Scholar
Karr, M.: Theory of summation in finite terms. J. Symbolic Comput. 1(3), 303–315 (1985)
MathSciNet
Article
MATH
Google Scholar
Moch, S., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 43(6), 3363–3386 (2002)
MathSciNet
Article
MATH
Google Scholar
Nemes, I., Paule, P.: A canonical form guide to symbolic summation. In: Miola, A., Temperini, M. (eds.) Advances in the Design of Symbolic Computation Systems, Texts Monogr. Symbol. Comput., pp. 84–110. Springer, WienNew York (1997)
Paule, P., Schneider, C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359–378 (2003)
MathSciNet
Article
MATH
Google Scholar
Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A = B\). A K Peters Ltd, Wellesley, MA (1996)
MATH
Google Scholar
Petkovšek, M., Zakrajšek, H.: Solving linear recurrence equations with polynomial coefficients. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, TextsMonogr. Symbol. Comput., pp. 259–284. Springer, Vienna (2013)
Prodinger, H., Schneider, C., Wagner, S.: Unfair permutations. European J. Combin. 32(8), 1282–1298 (2011)
MathSciNet
Article
MATH
Google Scholar
Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Internat. J. Modern Phys. A 15(5), 725–754 (2000)
MathSciNet
Article
MATH
Google Scholar
Schneider, C.: A collection of denominator bounds to solve parameterized linear difference equations in \({\prod \sum}\)-extensions. An. Univ. Timis, oara Ser. Mat. Inform. 42(2), 163–179 (2004)
MathSciNet
Google Scholar
Schneider, C.: Symbolic summation aßists combinatorics. Sem. Lothar. Combin. 56, Art. B56b (2006/07)
Schneider, C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43(9), 611–644 (2008)
MathSciNet
Article
MATH
Google Scholar
Schneider, C.: Parameterized telescoping proves algebraic independence of sums. Ann. Combin. 14(4), 533–552 (2010)
MathSciNet
Article
MATH
Google Scholar
Schneider, C.: Structural theorems for symbolic summation. Appl. Algebra Engrg. Comm. Comput. 21(1), 1–32 (2010)
MathSciNet
Article
MATH
Google Scholar
Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, Vol. 12, pp. 285–308. Amer. Math. Soc., Providence, RI (2010)
Google Scholar
Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts Monogr. Symbol. Comput., pp. 325–360. Springer-Verlag Wien, Vienna (2013)
Schneider, C.: A streamlined difference ring theory: Indefinite nested sums, the alternating sign and the parameterized telescoping problem. In: Winkler, F. et al. (eds.) Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 15th International Symposium, pp. 26–33. IEEE Computer Society, Washington, DC (2014)
Google Scholar
Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials, Applications of Algebra and Number Theory. Lecture Notes in Computer Science (LNCS), Vol. 8942, pp. 157–191. Springer, New York (2015)
Google Scholar
Schneider, C.: A difference ring theory for symbolic summation. J. Symbolic. Comput. 72, 82–127 (2016)
MathSciNet
Article
MATH
Google Scholar
Schneider, C.: Summation theory II: characterizations of \({R\prod\sum}\)-extensions and algorithmic aspects. J. Symbolic. Comput. 80, 616–664 (2017)
MathSciNet
Article
Google Scholar
Schneider, C., Osburn, R.: Gaußian hypergeometric series and supercongruences. Math. Comp. 78(267), 275–292 (2009)
MathSciNet
MATH
Google Scholar
Schneider, C., Pemantle, R.: When is 0.999... equal to 1? Amer. Math. Monthly 114(4), 344–350 (2007)
MathSciNet
Article
MATH
Google Scholar
van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. Lecture Notes in Math., Vol. 1666. Springer-Verlag, Berlin (1997)
Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Internat. J. Modern Phys. A 14(13), 2037–2076 (1999)
MathSciNet
Article
MATH
Google Scholar
Weinzierl, S.: Expansion around half-integer values, binomial sums and inverse binomial sums. J. Math. Phys. 45(7), 2656–2673 (2004)
MathSciNet
Article
MATH
Google Scholar