The Enumeration of Permutations Avoiding 3124 and 4312

Abstract

We find the generating function for the class of all permutations that avoid the patterns 3124 and 4312 by showing that it is an inflation of the union of two geometric grid classes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Albert, M.H.: PermLab: software for permutation patterns. http://www.cs.otago.ac.nz/PermLab/ (2014)

  2. 2.

    Albert M.H., Atkinson M.D.: Simple permutations and pattern restricted permutations. Discrete Math. 300(1-3), 1–15 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Albert M.H., Atkinson M.D., Bouvel M., Ruškuc N., Vatter V.: Geometric grid classes of permutations. Trans. Amer. Math. Soc. 365(11), 5859–5881 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Albert, M.H., Atkinson, M.D., Brignall, R.: The enumeration of three pattern classes using monotone grid classes. Electron. J. Combin. 19(3), #P20 (2012)

  5. 5.

    Albert M.H., Atkinson M.D., Vatter V.: Inflations of geometric grid classes: three case studies. Australas. J. Combin. 58(1), 27–47 (2014)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Bóna, M.: The permutation classes equinumerous to the smooth class. Electron. J. Combin. 5, #R31 (1998)

  7. 7.

    Brignall R., Ruškuc N., Vatter V.: Simple permutations: decidability and unavoidable substructures. Theoret. Comput. Sci. 391(1-2), 150–163 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Delgado, M., Linton, S., Morais, J.: Automata — a GAP package, Version 1.13. (2011)

  9. 9.

    Elizalde S.: The X-class and almost-increasing permutations. Ann. Combin. 15(1), 51–68 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

  11. 11.

    The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.6.4. (2013)

  12. 12.

    Kremer D.: Permutations with forbidden subsequences and a generalized schroder number. Discrete Math. 218(1-3), 121–130 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Kremer D.: Postscript: “Permutations with forbidden subsequences and a generalized Schröder number”. Discrete Math. 270(1-3), 333–334 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kremer D., Shiu W.C.: Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268(1-3), 171–183 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Le, I.: Wilf classes of pairs of permutations of length 4. Electron. J. Combin. 12, #R25 (2005)

  16. 16.

    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org/ (2015)

  17. 17.

    Vatter, V., Waton, S.: On points drawn from a circle. Electron. J. Combin. 18(1), #P223 (2011)

  18. 18.

    Waton, S.: On permutation classes defined by token passing networks, gridding matrices and pictures: three flavours of involvement. PhD thesis, Univ. of St Andrews, St Andrews (2007)

  19. 19.

    Wikipedia. Enumerations of specific permutation classes — Wikipedia, the free encyclopedia (2015)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay Pantone.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pantone, J. The Enumeration of Permutations Avoiding 3124 and 4312. Ann. Comb. 21, 293–315 (2017). https://doi.org/10.1007/s00026-017-0352-2

Download citation

Mathematics Subject Classification

  • 05A05
  • 05A15

Keywords

  • permutation class
  • simple permutation
  • geometric grid class