Annals of Combinatorics

, Volume 21, Issue 2, pp 293–315 | Cite as

The Enumeration of Permutations Avoiding 3124 and 4312

Article

Abstract

We find the generating function for the class of all permutations that avoid the patterns 3124 and 4312 by showing that it is an inflation of the union of two geometric grid classes.

Mathematics Subject Classification

05A05 05A15 

Keywords

permutation class simple permutation geometric grid class 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, M.H.: PermLab: software for permutation patterns. http://www.cs.otago.ac.nz/PermLab/ (2014)
  2. 2.
    Albert M.H., Atkinson M.D.: Simple permutations and pattern restricted permutations. Discrete Math. 300(1-3), 1–15 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Albert M.H., Atkinson M.D., Bouvel M., Ruškuc N., Vatter V.: Geometric grid classes of permutations. Trans. Amer. Math. Soc. 365(11), 5859–5881 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Albert, M.H., Atkinson, M.D., Brignall, R.: The enumeration of three pattern classes using monotone grid classes. Electron. J. Combin. 19(3), #P20 (2012)Google Scholar
  5. 5.
    Albert M.H., Atkinson M.D., Vatter V.: Inflations of geometric grid classes: three case studies. Australas. J. Combin. 58(1), 27–47 (2014)MathSciNetMATHGoogle Scholar
  6. 6.
    Bóna, M.: The permutation classes equinumerous to the smooth class. Electron. J. Combin. 5, #R31 (1998)Google Scholar
  7. 7.
    Brignall R., Ruškuc N., Vatter V.: Simple permutations: decidability and unavoidable substructures. Theoret. Comput. Sci. 391(1-2), 150–163 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Delgado, M., Linton, S., Morais, J.: Automata — a GAP package, Version 1.13. (2011)Google Scholar
  9. 9.
    Elizalde S.: The X-class and almost-increasing permutations. Ann. Combin. 15(1), 51–68 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)Google Scholar
  11. 11.
    The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.6.4. (2013)Google Scholar
  12. 12.
    Kremer D.: Permutations with forbidden subsequences and a generalized schroder number. Discrete Math. 218(1-3), 121–130 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kremer D.: Postscript: “Permutations with forbidden subsequences and a generalized Schröder number”. Discrete Math. 270(1-3), 333–334 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kremer D., Shiu W.C.: Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268(1-3), 171–183 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Le, I.: Wilf classes of pairs of permutations of length 4. Electron. J. Combin. 12, #R25 (2005)Google Scholar
  16. 16.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org/ (2015)
  17. 17.
    Vatter, V., Waton, S.: On points drawn from a circle. Electron. J. Combin. 18(1), #P223 (2011)Google Scholar
  18. 18.
    Waton, S.: On permutation classes defined by token passing networks, gridding matrices and pictures: three flavours of involvement. PhD thesis, Univ. of St Andrews, St Andrews (2007)Google Scholar
  19. 19.
    Wikipedia. Enumerations of specific permutation classes — Wikipedia, the free encyclopedia (2015)Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations