Skip to main content
Log in

Completely Effective Error Bounds for Stirling Numbers of the First and Second Kinds via Poisson Approximation

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We provide completely effective error estimates for Stirling numbers of the first and second kinds, denoted by s(n, m) and S(n, m), respectively. These bounds are useful for values of \({m\geq n-O(\sqrt{n})}\). An application of our Theorem 3.2 yields, for example,

$$\begin{array}{ll}{s({10^{12}}, {10^{12}}-2 \times{10^6})/{10^{35664464}} \in [1.87669, 1.876982],}\\{S({10^{12}}, {10^{12}}-2 \times{10^6})/{10^{35664463}} \in [1.30121, 1.306975]}.\end{array}$$

The bounds are obtained via Chen-Stein Poisson approximation, using an interpretation of Stirling numbers as the number of ways of placing non-attacking rooks on a chess board. As a corollary to Theorem 3.2, summarized in Proposition 2.4, we obtain two simple and explicit asymptotic formulas, one for each of s(n, m) and S(n, m), for the parametrization \({m = n-t {n^a}, 0 \leq a \leq \frac{1}{2}}\). These asymptotic formulas agree with the ones originally observed by Moser and Wyman in the range \({0 < a < \frac{1}{2}}\), and they connect with a recent asymptotic expansion by Louchard for \({\frac{1}{2} < a < 1}\), hence filling the gap at \({a = \frac{1}{2}}\). We also provide a generalization applicable to rook and file numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chelluri R., Richmond L., Temme N.: Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20(1), 1–13 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Flajolet P., Prodinger H.: On Stirling numbers for complex arguments and Hankel contours. SIAM J. Discrete Math. 12(2), 155–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Garsia A.M., Remmel J.B.: Q-counting rook configurations and a formula of Frobenius. J. Combin. Theory Ser. A 41(2), 246–275 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Good I.J.: Saddle-point methods for the multinomial distribution. Ann. Math. Statistics 28, 861–881 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  5. Good I.J.: An asymptotic formula for the differences of the powers at zero. Ann. Math. Statistics 32, 249–256 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grimmett G.R., Stirzaker D.R.: Probability and Random Processes. Third edition. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  7. Hsu L.C.: Note on an asymptotic expansion of the nth difference of zero. Ann. Math. Statistics 19, 273–277 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hwang H.-K.: Asymptotic expansions for the Stirling numbers of the first kind. J. Combin. Theory Ser. A 71(2), 343–351 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jordan, C.: Cours d’analyse de l’École polytechnique. Tome I. Les Grands Classiques Gauthier-Villars. [Gauthier-VillarsGreat Classics]. Éditions Jacques Gabay, Sceaux, 1991. Calcul différentiel. [Differential calculus], Reprint of the third (1909) edition

  10. Kaplansky I., Riordan J.: The problem of the rooks and its applications. Duke Math. J. 13, 259–268 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  11. Louchard G.: Asymptotics of the Stirling numbers of the first kind revisited: a saddle point approach. Discrete Math. Theor. Comput. Sci. 12(2), 167–184 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Louchard G.: Asymptotics of the Stirling numbers of the second kind revisited. Appl. Anal. Discrete Math. 7(2), 193–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moser L., Wyman M.: Stirling numbers of the second kind. Duke Math. J. 25, 29–43 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moser L., Wyman M.: Asymptotic development of the Stirling numbers of the first kind. J. London Math. Soc. 33, 133–146 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  15. Remmel, J.B., Wachs, M.L.: Rook theory, generalized Stirling numbers and (p, q)-analogues. Electron. J. Combin. 11(1), #R84 (2004)

  16. Sachkov, V.N.: Probabilistic Methods in Combinatorial Analysis. Encyclopedia of Mathematics and its Applications, Vol. 56. Translated from the Russian, Revised by the author. Cambridge University Press, Cambridge (1997)

  17. Salvy B., Shackell J.: Symbolic asymptotics: multiseries of inverse functions. J. Symbolic Comput. 27(6), 543–563 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stanley, R.P.: Enumerative Combinatorics. Volume 1. Second edition. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (2012)

  19. Wilf H.S.: The asymptotic behavior of the Stirling numbers of the first kind. J. Combin. Theory Ser. A 64(2), 344–349 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen DeSalvo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arratia, R., DeSalvo, S. Completely Effective Error Bounds for Stirling Numbers of the First and Second Kinds via Poisson Approximation. Ann. Comb. 21, 1–24 (2017). https://doi.org/10.1007/s00026-017-0339-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-017-0339-z

Mathematics Subject Classification

Keywords

Navigation