Skip to main content
Log in

Ehrhart Series, Unimodality, and Integrally Closed Reflexive Polytopes

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

An interesting open problem in Ehrhart theory is to classify those lattice polytopes having a unimodal h*-vector. Although various sufficient conditions have been found, necessary conditions remain a challenge. In this paper, we consider integrally closed reflexive simplices and discuss an operation that preserves reflexivity, integral closure, and unimodality of the h*-vector, providing one explanation for why unimodality occurs in this setting. We also discuss the failure of proving unimodality in this setting using weak Lefschetz elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanasiadis C.A.: Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley. J. Reine Angew. Math. 583, 163–174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batyrev V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Beck M., Hoşten S.: Cyclotomic polytopes and growth series of cyclotomic lattices. Math. Res. Lett. 13(4), 607–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck M., Jayawant P., McAllister T.B.: Lattice-point generating functions for free sums of convex sets. J. Combin. Theory Ser. A 120(6), 1246–1262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, M., Robins, S.: Computing the Continuous Discretely. Second Edition. Undergraduate Texts in Mathematics. Springer, New York (2007)

  6. Bey C., Henk M., Wills J.M.: Notes on the roots of Ehrhart polynomials. Discrete Comput. Geom. 38(1), 81–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Braun, B.: An Ehrhart series formula for reflexive polytopes. Electron. J. Combin. 13, #N15 (2006)

  8. Bruns W., Römer T.: h-vectors of Gorenstein polytopes. J. Combin. Theory Ser. A 114(1), 65–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conrads H.: Weighted projective spaces and reflexive simplices. Manuscripta Math. 107(2), 215–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ehrhart E.: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Gubeladze J.: Convex normality of rational polytopes with long edges. Adv. Math. 230(1), 372–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haase C., Melnikov I.V.: The reflexive dimension of a lattice polytope. Ann. Combin. 10(2), 211–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harima T., Migliore J.C., Nagel U., Watanabe J.: The weak and strong lefschetz properties for artinian k-algebras. J. Algebra 262(1), 99–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Glebe (1992)

  15. Hibi T.: Dual polytopes of rational convex polytopes. Combinatorica 12(2), 237–240 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hibi T., Higashitani A., Li N.: Hermite normal forms and δ-vectors. J. Combin. Theory Ser. A 119(6), 1158–1173 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Higashitani A.: Counterexamples of the conjecture on roots of Ehrhart polynomials. Discrete Comput. Geom. 47(3), 618–623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kreuzer M., Skarke H.: Complete classification of reflexive polyhedra in four dimensions. Adv. Theor. Math. Phys. 4(6), 1209–1230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lagarias J.C., Ziegler G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math. 43(5), 1022–1035 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mustaţǎ M., Payne S.: Ehrhart polynomials and stringy Betti numbers. Math. Ann. 333(4), 787–795 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ohsugi H., Hibi T.: Special simplices and Gorenstein toric rings. J. Combin. Theory Ser. A 113(4), 718–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Payne S.: Ehrhart series and lattice triangulations. Discrete Comput. Geom. 40(3), 365–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schepers J., Van Langenhoven L.: Unimodality questions for integrally closed lattice polytopes. Ann. Combin. 17(3), 571–589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanley R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Capobianco, M.F. et al. (eds.), Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., Vol. 576 pp. 500–535. New York Acad. Sci., New York (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Davis.

Additional information

The first author is partially supported by the National Security Agency through award H98230-13-1-0240. The second author is partially supported by a 2013-2014 Fulbright U.S. Student Fellowship. The authors thank Benjamin Nill for useful insights that contributed to the proof of Theorem 3.3, and Akihiro Higashitani for his thoughtful comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, B., Davis, R. Ehrhart Series, Unimodality, and Integrally Closed Reflexive Polytopes. Ann. Comb. 20, 705–717 (2016). https://doi.org/10.1007/s00026-016-0337-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-016-0337-6

Mathematics Subject Classification

Keywords

Navigation