Skip to main content
Log in

Increasing Tableaux, Narayana Numbers and an Instance of the Cyclic Sieving Phenomenon

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We give a counting formula for the set of rectangular increasing tableaux in terms of generalized Narayana numbers. We define small m–Schröder paths and give a bijection between the set of increasing rectangular tableaux and small m–Schröder paths, generalizing a result of Pechenik [4]. Using K–jeu de taquin promotion, we give a cyclic sieving phenomenon for the set of increasing hook tableaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett M., Madill B., Stokke A.: Jeu-de-taquin promotion and a cyclic sieving phenomenon for semistandard hook tableaux. Discrete Math. 319, 62–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Frame, J.S., Robinson, G. de B., Thrall, R.M.: The hook graphs of the symmetric groups. Canadian J. Math. 6, 316–324 (1954)

  3. Goulden I.P., Jackson D.M.: Combinatorial Enumeration. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  4. Pechenik O.: Cyclic sieving of increasing tableaux and small Schröder paths. J. Combin. Theory Ser. A 125, 357–378 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Reiner V., Stanton D., White D.: The cyclic sieving phenomenon. J. Combin. Theory Ser. A 108(1), 17–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rhoades B.: Cyclic sieving, promotion, and representation theory. J. Combin. Theory Ser. A 117(1), 38–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rhoades, B.: A skein action of the symmetric group on noncrossing partitions. Preprint. arXiv:1501.04680 (2015)

  8. Sagan, B.: The cyclic sieving phenomenon: a survey. In: Chapman, R. (ed.) Surveys in Combinatorics 2011. London Math. Soc. Lecture Note Series, Vol. 392, pp. 183–234. Cambridge University Press, Cambridge (2011)

  9. Stanley, R.P.: Promotion and evacuation. Electron. J. Combin. 16(2), #R9 (2009)

  10. Sulanke, R.A.: Generalizing Narayana and Schröder numbers to higher dimensions. Electron. J. Combin. 11, #R54 (2004)

  11. Sulanke R.A.: Three dimensional Narayana and Schr¨oder numbers. Theoret. Comput. Sci. 346(2–3), 455–468 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thomas H., Yong A.: A jeu de taquin theory for increasing tableaux with applications to K-theoretic calculus. Algebra Number Theory 3(2), 121–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Stokke.

Additional information

This research was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pressey, T., Stokke, A. & Visentin, T. Increasing Tableaux, Narayana Numbers and an Instance of the Cyclic Sieving Phenomenon. Ann. Comb. 20, 609–621 (2016). https://doi.org/10.1007/s00026-016-0320-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-016-0320-2

Mathematics Subject Classification

Keywords

Navigation