Abstract
The immaculate basis of the non-commutative symmetric functions was recently introduced by the first and third authors to lift certain structures in the symmetric functions to the dual Hopf algebras of the non-commutative and quasi-symmetric functions. It was shown that immaculate basis satisfies a positive, multiplicity free right Pieri rule. It was conjectured that the left Pieri rule may contain signs but that it would be multiplicity free. Similarly, it was also conjectured that the dual quasi-symmetric basis would also satisfy a signed multiplicity free Pieri rule. We prove these two conjectures here.
This is a preview of subscription content, access via your institution.
References
Aguiar M., Bergeron N., Sottile F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compositio Math. 142(1), 1–30 (2006)
Berg C., Bergeron N., Saliola F., Serrano L., Zabrocki M.: A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canad. J. Math. 66(3), 525–565 (2014)
Berg C., Bergeron N., Saliola F., Serrano L., Zabrocki M.: Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Amer. Math. Soc. 143(3), 991–1000 (2015)
Berg, C., Bergeron, N., Saliola, F., Serrano, L., Zabrocki, M.: Multiplicative structures of the immaculate basis of non-commutative symmetric functions. arXiv:1305.4700 (2013)
Bergeron N., Mykytiuk S., Sottile F., van Willigenburg S.: Noncommutative Pieri operators on posets. J. Combin. Theory Ser. A 91(1-2), 84–110 (2000)
Chapoton, F., Hivert, F., Novelli, J.-C., Thibon, J.-Y.: An operational calculus for the Mould operad. Int. Math. Res. Not. IMRN 2008(9), Art. 018 (2008)
Ehrenborg R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)
Gessel, I.M.: Multipartite P-partitions and inner products of skew Schur functions. In: Greene, C. (ed.) Combinatorics and Algebra. Contemp. Math., Volume 34, pp. 289–317. Amer. Math. Soc., Providence, RI (1984)
Gessel I.M., Reutenauer C.: Counting permutations with given cycle structure and descent set. J. Combin. Theory Ser. A 64(2), 189–215 (1993)
Haglund J., Haiman M., Loehr N.: A combinatorial formula for nonsymmetric Macdonald polynomials. Amer. J. Math. 130(2), 359–383 (2008)
Haglund J., Haiman M., Loehr N., Remmel J.B., Ulyanov A.: A combinatorial formula for the character of the diagonal coinvariants. Duke J. Math. 126(2), 195–232 (2005)
Haglund J., Luoto K., Mason S., van Willigenburg S.: Quasisymmetric Schur functions. J. Combin. Theory Ser. A 118(2), 463–490 (2011)
Krob D., Thibon J.-Y.: Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at q = 0. J. Algebraic Combin. 6(4), 339–376 (1997)
Macdonald I.G.: Symmetric Functions and Hall Polynomials. Second Edition. Oxford University Press, New York (1995)
Malvenuto C., Reutenauer C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)
Sagan B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. 2nd Edition. Springer-Verlag, New York (2001)
Stein, W.A. et al.: Sage Mathematics Software (Version 4.3.3). The Sage Development Team. http://www.sagemath.org (2010)
The Sage-Combinat community: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. http://combinat.sagemath.org (2008)
Stanley R.P.: On the number of reduced decompositions of elements of Coxeter groups. European J. Combin. 5(4), 359–372 (1984)
Zelevinsky A.V.: Representations of Finite Classical Groups: a Hopf Algebra Approach. Springer-Verlag, Berlin (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bergeron, N., Sánchez-Ortega, J. & Zabrocki, M. The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions. Ann. Comb. 20, 283–300 (2016). https://doi.org/10.1007/s00026-016-0303-3
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00026-016-0303-3
Mathematics Subject Classification
- 05E05
Keywords
- non-commutative symmetric functions
- quasi-symmetric functions
- tableaux
- Schur functions