Skip to main content

The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions

Abstract

The immaculate basis of the non-commutative symmetric functions was recently introduced by the first and third authors to lift certain structures in the symmetric functions to the dual Hopf algebras of the non-commutative and quasi-symmetric functions. It was shown that immaculate basis satisfies a positive, multiplicity free right Pieri rule. It was conjectured that the left Pieri rule may contain signs but that it would be multiplicity free. Similarly, it was also conjectured that the dual quasi-symmetric basis would also satisfy a signed multiplicity free Pieri rule. We prove these two conjectures here.

This is a preview of subscription content, access via your institution.

References

  1. Aguiar M., Bergeron N., Sottile F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compositio Math. 142(1), 1–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berg C., Bergeron N., Saliola F., Serrano L., Zabrocki M.: A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Canad. J. Math. 66(3), 525–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berg C., Bergeron N., Saliola F., Serrano L., Zabrocki M.: Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Amer. Math. Soc. 143(3), 991–1000 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berg, C., Bergeron, N., Saliola, F., Serrano, L., Zabrocki, M.: Multiplicative structures of the immaculate basis of non-commutative symmetric functions. arXiv:1305.4700 (2013)

  5. Bergeron N., Mykytiuk S., Sottile F., van Willigenburg S.: Noncommutative Pieri operators on posets. J. Combin. Theory Ser. A 91(1-2), 84–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chapoton, F., Hivert, F., Novelli, J.-C., Thibon, J.-Y.: An operational calculus for the Mould operad. Int. Math. Res. Not. IMRN 2008(9), Art. 018 (2008)

  7. Ehrenborg R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gessel, I.M.: Multipartite P-partitions and inner products of skew Schur functions. In: Greene, C. (ed.) Combinatorics and Algebra. Contemp. Math., Volume 34, pp. 289–317. Amer. Math. Soc., Providence, RI (1984)

  9. Gessel I.M., Reutenauer C.: Counting permutations with given cycle structure and descent set. J. Combin. Theory Ser. A 64(2), 189–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haglund J., Haiman M., Loehr N.: A combinatorial formula for nonsymmetric Macdonald polynomials. Amer. J. Math. 130(2), 359–383 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haglund J., Haiman M., Loehr N., Remmel J.B., Ulyanov A.: A combinatorial formula for the character of the diagonal coinvariants. Duke J. Math. 126(2), 195–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haglund J., Luoto K., Mason S., van Willigenburg S.: Quasisymmetric Schur functions. J. Combin. Theory Ser. A 118(2), 463–490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krob D., Thibon J.-Y.: Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at q = 0. J. Algebraic Combin. 6(4), 339–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Macdonald I.G.: Symmetric Functions and Hall Polynomials. Second Edition. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  15. Malvenuto C., Reutenauer C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sagan B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. 2nd Edition. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  17. Stein, W.A. et al.: Sage Mathematics Software (Version 4.3.3). The Sage Development Team. http://www.sagemath.org (2010)

  18. The Sage-Combinat community: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. http://combinat.sagemath.org (2008)

  19. Stanley R.P.: On the number of reduced decompositions of elements of Coxeter groups. European J. Combin. 5(4), 359–372 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zelevinsky A.V.: Representations of Finite Classical Groups: a Hopf Algebra Approach. Springer-Verlag, Berlin (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantel Bergeron.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergeron, N., Sánchez-Ortega, J. & Zabrocki, M. The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions. Ann. Comb. 20, 283–300 (2016). https://doi.org/10.1007/s00026-016-0303-3

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-016-0303-3

Mathematics Subject Classification

  • 05E05

Keywords

  • non-commutative symmetric functions
  • quasi-symmetric functions
  • tableaux
  • Schur functions