Annals of Combinatorics

, Volume 20, Issue 2, pp 373–378 | Cite as

Ribbon Graph Minors and Low-Genus Partial Duals

Article
  • 55 Downloads

Abstract

We give an excluded minor characterisation of the class of ribbon graphs that admit partial duals of Euler genus at most one.

Keywords

embedded graph excluded minor real projective plane knots minor ribbon graph 

Mathematics Subject Classification

05C83 05C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollobás B., Riordan O.: A polynomial of graphs on surfaces. Math. Ann. 323(1), 81–96 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chmutov S.: Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial. J. Combin. Theory Ser. B 99(3), 617–638 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dasbach O.T., Futer D., Kalfagianni E., Lin X.-S., Stoltzfus N.W.: The Jones polynomial and graphs on surfaces. J. Combin. Theory Ser. B 98(2), 384–399 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ellis-Monaghan J.A., Moffatt I.: Graphs on Surfaces. Springer, New York (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Moffatt, I.: Excluded minors and the ribbon graphs of knots. J. Graph Theory (to appear)Google Scholar
  6. 6.
    Moffatt I.: Partial duals of plane graphs, separability and the graphs of knots. Algebr. Geom. Topol. 12(2), 1099–1136 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Moffatt I.: Separability and the genus of a partial dual. European J. Combin. 34(2), 355–378 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Moffatt I., Strömberg J.: On the ribbon graphs of links in real projective space. Involve 9(1), 133–153 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Robertson N., Seymour P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Royal HollowayUniversity of LondonEghamUnited Kingdom

Personalised recommendations