Skip to main content
Log in

Generalized Fibonacci Polynomials and Fibonomial Coefficients

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

The focus of this paper is the study of generalized Fibonacci polynomials and Fibonomial coefficients. The former are polynomials \({\{n\}}\)in variables s,t given by \({\{0\} = 0, \{1\} = 1}\), and \({\{n \} = s\{n - 1 \} +t\{n - 2 \}}\) for \({{n \geq 2}}\) . The latter are defined by \({\left\{\begin{array}{ll} n\\ k \end{array}\right\} = \{ n \}! / (\{ k \}!\{ n - k \}!)}\) where \({{\{n \}! = \{1 \}\{2 \}\cdots\{n \}}}\). These quotients are also polynomials in s, t and specializations give the ordinary binomial coefficients, the Fibonomial coefficients, and the q-binomial coefficients. We present some of their fundamental properties, including a more general recursion for \({\{n\}}\) , an analogue of the binomial theorem, a new proof of the Euler- Cassini identity in this setting with applications to estimation of tails of series, and valuations when s and t take on integral values. We also study a corresponding analogue of the Catalan numbers. Conjectures and open problems are scattered throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amdeberhan T., Zeilberger D.: Determinants through the looking glass. Adv. Appl. Math. 27(2-3), 225–230 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bousquet-Mélou M., Eriksson K.: Lecture hall partitions. Ramanujan J. 1(1), 101–111 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bousquet-Mélou M., Eriksson K.: Lecture hall partitions II. Ramanujan J. 1(2), 165–185 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenti, F.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. In: Barcelo, H., Kalai, G. (eds.) Jerusalem Combinatorics ’93. Contemp. Math., Vol. 178, pp. 71–89. Amer. Math. Soc., Providence, RI (1994)

  5. Chen, X., Sagan, B.E.: On the fractal nature of Fibonomial coefficients. Integers 14, #A3 (2014)

  6. Cigler, J.: A new class of q-Fibonacci polynomials. Electron. J. Combin. 10, #R19 (2003)

  7. Cigler J.: q-Fibonacci polynomials. Fibonacci Quart. 41(1), 31–40 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Cigler J.: Some algebraic aspects of Morse code sequences. Discrete Math. Theor. Comput. Sci. 6(1), 55–68 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Cigler J.: q-Fibonacci polynomials and the Rogers-Ramanujan identities. Ann. Combin. 8(3), 269–285 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deutsch E., Sagan B.E.: Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory 117(1), 191–215 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dilcher K., Stolarsky K.B.: A Pascal-type triangle characterizing twin primes. Amer. Math. Monthly 112(8), 673–681 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dodgson C.L.: Condensation of determinants, being a new and brief method for computing their arithmetical values. Proc. Royal Soc. London 15, 150–155 (1866)

    Article  Google Scholar 

  13. Ekhad, S.B.: The Sagan-Savage Lucas-Catalan polynomials have positive coefficients. Preprint, http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bruce.html.

  14. Goyt, A.M., Mathisen, D.: Permutation statistics and q-Fibonacci numbers. Electron. J. Combin. 16(1), #R101 (2009)

  15. Goyt A.M., Sagan B.E.: Set partition statistics and q-Fibonacci numbers. European J. Combin. 30(1), 230–245 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hoggatt Jr., V.E., Long, C.T.: Divisibility properties of generalized Fibonacci polynomials. Fibonacci Quart. 12(2), 113–120 (1974)

  17. Holliday S.H., Komatsu T.: On the sum of reciprocal generalized Fibonacci numbers. Integers 11(4), 441–455 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Koshy T.:: Fibonacci and Lucas Numbers with Applications. Wiley-Interscience, New York (2001)

    Book  MATH  Google Scholar 

  19. Kummer E.E.: Über die Ergänzungssätze zu den allgemeinen reciprocitätsgesetzen. J. Reine Angew. Math. 44, 93–146 (1852)

    Article  MATH  Google Scholar 

  20. Lucas E.: Theorie des fonctions numeriques simplement periodiques. Amer. J. Math. 1(2), 184–196 (1878)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lucas E.: Theorie des fonctions numeriques simplement periodiques. Amer. J. Math. 1(3), 197–240 (1878)

    Article  MathSciNet  Google Scholar 

  22. Lucas E.: Theorie des fonctions numeriques simplement periodiques. Amer. J. Math. 1(4), 289–321 (1878)

    Article  MathSciNet  Google Scholar 

  23. Moll, V.H.: Numbers and Functions. Student Mathematical Library, Vol. 65. American Mathematical Society, Providence, RI (2012)

  24. Park, S.: Arithmetic properties of generalized Fibonacci sequences. Preprint, arXiv:1407.8086 (2014)

  25. Sagan B.E., Savage C.D.: Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences. Integers 10, 697–703 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Savage C.D., Yee A.J.: Euler’s partition theorem and the combinatorics of \({\ell}\) -sequences. J. Combin. Theory Ser. A 115(6), 967–996 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Capobianco, M. et al. (eds.) Graph Theory and Its Applications: East and West. Ann. New York Acad. Sci., Vol. 576, pp. 500–535. New York Acad. Sci., New York (1989)

  28. Wilf, H.S.: generatingfunctionology. Second edition. Academic Press, Inc., Boston, MA (1994)

  29. Wu, Z., Zhang, W.: Several identities involving the Fibonacci polynomials and Lucas polynomials. J. Inequal. Appl. 2013, #205 (2013)

  30. Zeilberger D.: Reverend Charles to the aid of Major Percy and Fields medalist Enrico. Amer. Math. Monthly 103(6), 501–502 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Sagan.

Additional information

Xi Chen: Research partially supported by a grant from the China Scholarship Council.

Victor H. Moll: Research partially supported by the National Science Foundation NSF-DMS 1112656.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amdeberhan, T., Chen, X., Moll, V.H. et al. Generalized Fibonacci Polynomials and Fibonomial Coefficients. Ann. Comb. 18, 541–562 (2014). https://doi.org/10.1007/s00026-014-0242-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-014-0242-9

Keywords

Mathematics Subject Classification

Navigation