Skip to main content

Refined Enumeration of Permutations Sorted with Two Stacks and a D 8-Symmetry

Abstract

We study permutations that are sorted by operators of the form S ° α ° S, where S is the usual stack sorting operator introduced by Knuth and α is any D 8-symmetry obtained by combining the classical reverse, complement, and inverse operations. Such permutations can be characterized by excluded (generalized) patterns. Some conjectures about the enumeration of these permutations, refined with numerous classical statistics, have been proposed by Claesson, Dukes, and Steingrímsson. We prove these conjectures, and enrich one of them with a few more statistics. The proofs mostly rely on generating trees techniques, and on a recent bijection of Giraudo between Baxter and twisted Baxter permutations.

This is a preview of subscription content, access via your institution.

References

  1. Albert, M.H., Atkinson, M.D., Bouvel, M., Claesson, A., Dukes, M.: Private communication. (2010)

  2. Albert M.H. et al.: On the inverse image of pattern classes under bubble sort. J. Combin. 2(2), 231–243 (2011)

    Article  MATH  Google Scholar 

  3. Babson, E., Steingrímsson, E.: Generalized permutation patterns and a classification of the Mahonian statistics. Sém. Lothar. Combin. 44, Art. B44b (2000)

  4. Barcucci E. et al.: ECO: a methodology for the enumeration of combinatorial objects. J. Differ. Equations Appl. 5(4-5), 435–490 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baxter G.: On fixed points of the composite of commuting functions. Proc. Amer. Math. Soc. 15, 851–855 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernini A., Ferrari L., Pinzani R.: Enumerating permutations avoiding three Babson-Steingrímsson patterns. Ann. Combin. 9(2): 137–162 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bóna, M.: A survey of stack-sorting disciplines. Electron. J. Combin. 9(2), #A1 (2002/03)

  8. Bousquet-Mélou, M.: Multi-statistic enumeration of two-stack sortable permutations. Electron. J. Combin. 5, #R21 (1998)

  9. Bousquet-Mélou M.: Sorted and/or sortable permutations. Discrete Math. 225(1-3): 25–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bousquet-Mélou M., et al.: (2+2)-free posets, ascent sequences and pattern avoiding permutations. J. Combin. Theory Ser. A 117(7): 884–909 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brändén, P., Claesson, A.: Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. Electron. J. Combin. 18(2), #P5 (2011)

  12. Chung F.R.K., et al.: The number of Baxter permutations. J. Combin. Theory Ser. A 24(3): 382–394 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Claesson, A., Dukes, M., Steingrímsson, E.: Private communication. (2007)

  14. Claesson A., Dukes M., Steingrímsson E.: Permutations sortable by n – 4 passes through a stack. Ann. Combin. 14(1): 45–51 (2010)

    Article  MATH  Google Scholar 

  15. Claesson, A., Úlfarsson, H.: Sorting and preimages of pattern classes. DMTCS proc. AR, 595–606 (2012)

  16. Dokos T., et al.: Permutation patterns and statistics. Discrete Mathematics. 312(18): 2760–2775 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dulucq S., Gire S., Guibert O.: A combinatorial proof of J. West’s conjecture. Discrete Math. 187(1-3): 71–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dulucq S., Gire S., West J.: Permutations with forbidden subsequences and nonseparable planar maps. Discrete Math. 153(1-3): 85–103 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dulucq S., Guibert O.: Baxter permutations. Discrete Math. 180(1-3): 143–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Giraudo, S.: Combinatoire algébrique des arbres, PhD thesis, Université Paris-Est, Cedex, France (2011)

  21. Giraudo S.: Algebraic and combinatorial structures on pairs of twin binary trees. J. Algebra 360, 115–157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goulden I.P.,West J.: Raney paths and a combinatorial relationship between rooted nonseparable planar maps and two-stack-sortable permutations. J. Combin. Theory Ser. A 75(2): 220–242 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Guibert, O.: Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young. PhD thesis, Université Bordeaux 1, Talence, France (1995)

  24. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms, Vol. 1. 3rd edition. Addison-Wesley, Reading, MA (1997)

  25. Ouchterlony, E.: On Young tableau involutions and patterns in permutations. PhD thesis, Linköpings Universitet, Linköping, Sweden (2005)

  26. The OEIS Foundation Inc.: The on-line encyclopedia of integer sequences. http://oeis.org (2007)

  27. Úlfarsson, H.: Describing West-3-stack-sortable permutations with permutation patterns. Sém. Lothar. Combin. 67, Art. B67d (2011/12)

  28. Ú lfarsson H.: A unification of permutation patterns related to Schubert varieties. Pure Math. Appl. 22(2): 273–296 (2011)

    MATH  MathSciNet  Google Scholar 

  29. Viennot G.: Permutations ayant une forme donnée. Discrete Math. 26(3): 279–284 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. West, J.: Permutations with forbidden subsequences and stack-sortable permutations. PhD thesis, MIT, Cambridge, MA (1990)

  31. West J.: Sorting twice through a stack. Theoret. Comput. Sci. 117(1-2): 303–313 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. West J.: Generating trees and the Catalan and Schröder numbers. Discrete Math. 146(1-3): 247–262 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. West, J.: Enumeration of Reading’s twisted Baxter permutations. In: The Fourth Annual International Conference on Permutation Patterns. Reykjavik University, Reykjavik (2006)

  34. Zeilberger, D.: A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length \({n {\rm is} 2(3n)!/((n + 1)!(2n + 1)!)}\). Discrete Math. 102(1), 85–93 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Bouvel.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouvel, M., Guibert, O. Refined Enumeration of Permutations Sorted with Two Stacks and a D 8-Symmetry. Ann. Comb. 18, 199–232 (2014). https://doi.org/10.1007/s00026-014-0219-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-014-0219-8

Mathematics Subject Classification

  • 05A05
  • 05A15

Keywords

  • permutations
  • generalized patterns
  • stack sorting
  • symmetries of the square
  • enumeration
  • permutation statistics
  • Baxter permutations
  • generating trees