Skip to main content
Log in

Combinatorics for Graded Cartan Matrices of the Iwahori-Hecke Algebra of Type A

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Combinatorics concerning graded Cartan matrices for the Iwahori-Hecke algebra of type A is investigated. We give several descriptions for the determinant of the graded Cartan matrix, which imply some combinatorial identities. A conjectural expression for the elementary divisors is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews J.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Ariki S.: On the decomposition numbers of the Hecke algebra of G(m, 1, n). J. Math., Kyoto Univ. 36(4), 789–808 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bessenrodt, C., Hill, D.: Cartan invariants of symmetric groups and Iwahori-Hecke algebras. J. London Math. Soc. (2) 81(1): 113–128 (2010)

    Google Scholar 

  4. Bessenrodt C., Olsson J.B.: The 2-blocks of the covering groups of the symmetric groups. Adv. Math. 129(2), 261–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brundan J., Kleshchev A.S.: Cartan determinants and Shapovalov forms. Math. Ann. 324(3), 431–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brundan J., Kleshchev A.S.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222(6), 1883–1942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chari V., Jing N.: Realization of level one representations of U_q(\({\mathfrak{\hat{g}}}\)) at a root of unity. Duke Math. J. 108(1), 183–197 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hill D.: Elementary divisors of the Shapovalov form on the basic representation of Kac- Moody algebras. J. Algebra 319(12), 5208–5246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu J., Mathas A.: Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A. Adv. Math. 225(2), 598–642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khovanov M., Lauda A.D.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khovanov M., Lauda A.D.: A diagrammatic approach to categorification of quantum groups II. Trans. Amer. Math. Soc. 363(5), 2685–2700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lascoux A., Leclerc B., Thibon J.-Y.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Comm. Math. Phys. 181(1), 205–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagao, H., Tsushima, Y.: Representations of Finite Groups. Academic Press, Inc., Boston, MA (1989)

  14. Olsson, J.B.: Combinatorics and representations of finite groups. Universität Essen, Fachbereich Mathematik, Essen (1993)

  15. Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023 (2008)

  16. Tsuchioka, S.: Graded Cartan determinants and Shapovalov forms, talk delivered at MSJ Meeting in September 2010, Nagoya University (2010)

  17. Uno K., Yamada H.-F.: Elementary divisors of Cartan matrices for symmetric groups. J. Math. Soc. Japan 58(4), 1031–1036 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiro-Fumi Yamada.

Additional information

To Minoru Wakimoto on his seventieth birthday, with compliments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, M., Suzuki, T. & Yamada, HF. Combinatorics for Graded Cartan Matrices of the Iwahori-Hecke Algebra of Type A . Ann. Comb. 17, 427–442 (2013). https://doi.org/10.1007/s00026-013-0197-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0197-2

Mathematics Subject Classification

Keywords

Navigation