Skip to main content
Log in

Pure O-Sequences and Matroid h-Vectors

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We study Stanley’s long-standing conjecture that the h-vectors of matroid simplicial complexes are pure O-sequences. Our method consists of a new and more abstract approach, which shifts the focus from working on constructing suitable artinian level monomial ideals, as often done in the past, to the study of properties of pure O-sequences. We propose a conjecture on pure O-sequences and settle it in small socle degrees. This allows us to prove Stanley’s conjecture for all matroids of rank 3. At the end of the paper, using our method, we discuss a first possible approach to Stanley’s conjecture in full generality. Our technical work on pure O-sequences also uses very recent results of the third author and collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björner, A.: Homology and shellability of matroids and geometric lattices. In: White, N. (ed.) Matroid Applications, pp. 226–283. Cambridge University Press, Cambridge (1992)

  2. Boij, M. et al.: On the shape of a pure O-sequence. Mem. Amer. Math. Soc. 218(1024), (2012)

  3. Brown J.I., Colbourn C.J.: Roots of the reliability polynomial. SIAM J. Discrete Math. 5(4), 571–585 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruns W., Herzog J.: Cohen-Macaulay Rings. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Chari M.K.: Matroid inequalities. Discrete Math. 147, 283–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chari M.K.: Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Amer. Math. Soc. 349(10), 3925–3943 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantinescu, A., Varbaro, M.: h-vectors of matroid complexes. Preprint (2012)

  8. De Loera, J., Kemper, Y., Klee, S.: h-vectors of small matroid complexes. Electron. J. Combin. 19, #P14 (2012)

  9. Geramita, A.V.: Inverse systems of fat points: waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. In: The Curves Seminar at Queen’s, Vol. X, pp. 2–114. Queen’s University, Kingston, ON (1996)

  10. Hausel T.: Quaternionic geometry of matroids. Cent. Eur. J. Math. 3(1), 26–38 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hausel T., Sturmfels B.: Toric hyperKähler varieties. Doc. Math. 7, 495–534 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Hibi T.: What can be said about pure O-sequences?. J. Combin. Theory Ser. A 50(2), 319–322 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iarrobino A., Kanev V.: Power Sums, Gorenstein Algebras, and Determinantal Loci. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  14. Macaulay F.H.S.: Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc. 26, 531–555 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merino C.: The chip firing game and matroid complexes. Discrete Math. Theor. Comput. Sci. Proc. AA, 245–255 (2001)

    MathSciNet  Google Scholar 

  16. Merino C., Noble S.D., Ramírez-Ibáñez M., Villarroel-Flores R.: On the structure of the h-vector of a paving matroid. European J. Combin. 33(8), 1787–1799 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller E., Sturmfels B.: Combinatorial commutative algebra. Springer-Verlag, New York (2005)

    Google Scholar 

  18. Neel D.L., Neudauer N.A.: Matroids you have known. Math. Mag. 82(1), 26–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oh, S.: Generalized permutohedra, h-vectors of cotransversal matroids and pure O-sequences. Preprint, available on the arXiv at http://arxiv.org/abs/1005.5586

  20. Oxley, J.G.: Matroid Theory. Oxford University Press (2006)

  21. Proudfoot, N.: On the h-vector of a matroid complex. Unpublished note (2002)

  22. Schweig, J.: On the h-vector of a lattice path matroid. Electron. J. Combin. 17(1), #N3 (2010)

  23. Stanley, R.: Cohen-Macaulay complexes. In: Aigner, M. (ed.) Higher Combinatorics, pp. 51–62. Reidel, Dordrecht and Boston (1977)

  24. Stanley, R.: Combinatorics and Commutative Algebra. Birkhäuser Boston, Inc., Boston, MA (1996)

  25. Stanley, R.: Positivity problems and conjectures in algebraic combinatorics. In: Arnold, V. et al. (eds.) Mathematics: Frontiers and Perspectives, pp. 295–319. Amer. Math. Soc., Providence, RI (2000)

  26. Stokes, E.: The h-vectors of matroids and the arithmetic degree of squarefree strongly stable ideals. Ph.D. Thesis, University of Kentucky (2008). Available at http://archive.uky.edu/bitstream/10225/908/Erik_Stokes-dissertation.pdf

  27. Stokes, E.: The h-vectors of 1-dimensional matroid complexes and a conjecture of Stanley. Preprint, available on the arXiv at http://arxiv.org/abs/0903.3569

  28. Swartz, E.: g-elements of matroid complexes. J. Combin. Theory Ser. B 88, 369–375 (2003)

    Google Scholar 

  29. Swartz E.: g-elements, finite buildings, and higher Cohen-Macaulay connectivity. J. Combin. Theory Ser. A 113(7), 1305–1320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. White, N. (ed.): Theory of Matroids. Cambridge Univ. Press, Cambridge (1986)

  31. White, N. (ed.): Matroids Applications. Cambridge Univ. Press, Cambridge (1992)

  32. Zanello F.: Interval conjectures for level Hilbert functions. J. Algebra 321(10), 2705–2715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Zanello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hà, H.T., Stokes, E. & Zanello, F. Pure O-Sequences and Matroid h-Vectors. Ann. Comb. 17, 495–508 (2013). https://doi.org/10.1007/s00026-013-0193-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0193-6

Mathematics Subject Classification

Keywords

Navigation