Skip to main content
Log in

Unimodality Questions for Integrally Closed Lattice Polytopes

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

It is a famous open question whether every integrally closed reflexive polytope has a unimodal Ehrhart δ -vector. We generalize this question to arbitrary integrally closed lattice polytopes and we prove unimodality for the δ -vector of lattice parallelepipeds. This is the first nontrivial class of integrally closed polytopes. Moreover, we suggest a new approach to the problem for reflexive polytopes via triangulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Athanasiadis C.A: Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley. J. Reine Angew. Math. 583, 163–174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batyrev, V., Nill, B.: Combinatorial aspects of mirror symmetry. In: Beck, M. et al. (eds.) Integer Points in Polyhedra — Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, pp. 35–66. Amer. Math. Soc. Providence, RI (2008)

  3. Beck, M., Robins, S.: Computing the Continuous Discretely. Springer, New York (2007)

  4. Beck M., Stapledon A: On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series. Math. Z. 264(1), 195–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betke U., McMullen P: Lattice points in lattice polytopes. Monatsh. Math. 99(4), 253–265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruns W., Gubeladze J: Normality and covering properties of affine semigroups. J. Reine Angew. Math. 510, 161–178 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Bruns, W., Gubeladze, J.: Polytopes, Rings, and K-Theory. Springer, Dordrecht (2009)

  8. Bruns W., Ichim B: Normaliz: algorithms for affine monoids and rational cones. J. Algebra 324(5), 1098–1113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruns W., Römer T: h-vectors of Gorenstein polytopes. J. Combin. Theory Ser. A 114(1), 65–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Springer-Verlag, Berlin (2010)

  11. Gubeladze J: Convex normality of rational polytopes with long edges. Adv. Math. 230(1), 372–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hegedüs, G.: An Upper Bound Theorem concerning lattice polytopes. Preprint, arXiv:1103.5895v4 (2011)

  13. Hibi T: Flawless O-sequences and Hilbert functions of Cohen-Macaulay integral domains. J. Pure Appl. Algebra 60(3), 245–251 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hibi T: Dual polytopes of rational convex polytopes. Combinatorica 12(2), 237–240 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, NSW, Australia (1992)

  16. Hibi T: A lower bound theorem for Ehrhart polynomials of convex polytopes. Adv. Math. 105(2), 162–165 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ohsugi H., Hibi T: Convex polytopes all of whose reverse lexicographic initial ideals are squarefree. Proc. Amer. Math. Soc. 129(9), 2541–2546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohsugi H., Hibi T: Special simplices and Gorenstein toric rings. J. Combin. Theory Ser. A 113(4), 718–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustattǎ M., Payne S: Ehrhart polynomials and stringy Betti numbers. Math. Ann. 333(4), 787–795 (2005)

    Article  MathSciNet  Google Scholar 

  20. Payne S: Ehrhart series and lattice triangulations. Discrete Comput. Geom. 40(3), 365–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rambau, J.: TOPCOM: triangulations of point configurations and oriented matroids. In: Cohen, A.M., Gao, X.-S., Takayama, N. (eds.) Mathematical Software—ICMS 2002, pp. 330–340. World Scientific Publishing Co., River Edge, NJ (2002)

  22. Scott P.R: On convex lattice polygons. Bull. Austral. Math. Soc. 15(3), 395–399 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Capobianco, M.F., et al. (eds.) Graph Theory and Its Applications: East and West, pp. 500–535. New York Acad. Sci., New York (1989)

  24. Stanley R.P: On the Hilbert function of a graded Cohen-Macaulay domain. J. Pure Appl. Algebra 73(3), 307–314 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stapledon A: Inequalities and Ehrhart δ -vectors. Trans. Amer. Math. Soc. 361(10), 5615–5626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schepers.

Additional information

The first named author is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schepers, J., Van Langenhoven, L. Unimodality Questions for Integrally Closed Lattice Polytopes. Ann. Comb. 17, 571–589 (2013). https://doi.org/10.1007/s00026-013-0185-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0185-6

Mathematics Subject Classification

Keywords

Navigation