Skip to main content
Log in

On the Evaluation of the Tutte Polynomial at the Points (1, –1) and (2, –1)

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Motivated by the identity t (K n+2; 1, –1) = t (K n ; 2, –1), where t(G; x, y) is the Tutte polynomial of a graph G, we search for graphs G having the property that there is a pair of vertices u, v such that t(G; 1, –1) = t(G – {u, v}; 2, –1). Our main result gives a sufficient condition for a graph to have this property; moreover, it describes the graphs for which the property still holds when each vertex is replaced by a clique or a coclique of arbitrary order. In particular, we show that the property holds for the class of threshold graphs, a well-studied class of perfect graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beissinger J.S.: On external activity and inversions in trees. J. Combin. Theory Ser. B 33(1), 87–92 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A.: Homology and shellability of matroids and geometric lattices. In: White, N. (ed.) Matroid Applications, pp. 226–283. Cambridge Univ. Press, Cambridge (1992)

  3. Gessel I.M., Sagan B.E.: The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions. Electron. J. Combin. 3(2), #R9 (1996)

    MathSciNet  Google Scholar 

  4. Gessel I.M., Wang D.L.: Depth-first seach as a combinatorial correspondence. J. Combin. Theory Ser. A 26(3), 308–313 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kuznetsov A.G., Pak I.M., Postnikov A.E.: Increasing trees and alternating permutations. Russian Math. Surveys 49(6), 79–114 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mahadev N.V.R., Peled U.N.: Threshold Graphs and Related Topics. North-Holland Publishing Co., Amsterdam (1995)

    MATH  Google Scholar 

  7. Merino C.: The number of 0-1-2 increasing trees as two different evaluations of the Tutte polynomial of a complete graph. Electron. J. Combin. 15(1), #N28 (2008)

    MathSciNet  Google Scholar 

  8. Pansiot J.-J.: Nombres d’Euler et Inversions dans les Arbres. European J. Combin. 3(3), 259–262 (1982)

    MathSciNet  MATH  Google Scholar 

  9. W.T. Tutte : On dichromatic polynomials. J. Combin. Theory. 2(3), 301–320 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Viennot G.: Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi. J. Combin. Theory Ser. A 29(2), 121–133 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Welsh D.J.A.: Complexity: Knots, Colourings and Counting. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Goodall.

Additional information

Supported by ITI 1M0545.

Investigación realizada gracias al Programa UNAM-DGAPA-PAPIIT IN100312-2.

Partially supported by Projects MTM2011-24097 and Gen. Cat. DGR 2009SGR1040.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodall, A.J., Merino, C., de Mier, A. et al. On the Evaluation of the Tutte Polynomial at the Points (1, –1) and (2, –1). Ann. Comb. 17, 311–332 (2013). https://doi.org/10.1007/s00026-013-0180-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0180-y

Mathematics Subject Classification

Keywords

Navigation