Skip to main content
Log in

Transforms and Minors for Binary Functions

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We introduce a family of transforms that extends graph- and matroid-theoretic duality, and includes trinities and so on. Associated with each such transform are λ -minor operations, which extend deletion and contraction in graphs. We establish how the transforms interact with our generalised minors, extending the classical matroid-theoretic relationship between duality and minors: \({(M/e)^* =M^* \backslash e}\). Composition of the transforms is shown to correspond to complex multiplication of appropriate parameters. A new generalisation of the MacWilliams identity is given, using these transforms in place of ordinary duality. We also relate the weight enumerator of a binary linear code at a real argument < –1 to the transform, with parameter on the unit circle, of a close relative of the indicator function of the dual code. This result extends to arbitrary binary codes. The results on weight enumerators can also be recast in terms of the partition function of the Ising model from statistical mechanics. Most of our work is done at the level of binary functions \({f : 2^E \rightarrow \mathbb{C}}\), which include matroids as a special case. The specialisation to graphs is obtained by letting f be the indicator function of the cutset space of a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashkin J., Teller E.: Statistics of two-dimensional lattices with four components. Phys. Rev. 64(5-6), 178–184 (1943)

    Article  Google Scholar 

  2. Farr G.E.: A generalization of the Whitney rank generating function. Math. Proc. Cambridge Philos. Soc. 113(2), 267–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Farr G.E.: Some results on generalised Whitney functions. Adv. Appl. Math. 32(1-2), 239–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Farr, G.E.: Tutte-Whitney polynomials: some history and generalizations. In: Grimmett, G., McDiarmid, C. (eds.) Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, pp. 28–52. Oxford University Press, Oxford (2007)

  5. Farr G.E.: On the Ashkin-Teller model and Tutte-Whitney functions. Combin. Probab. Comput. 16(2), 251–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goodall, A.: Fourier analysis on finite Abelian groups: some graphical applications. In: Grimmett, G., McDiarmid, C. (eds.) Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, pp. 103–129. Oxford University Press, Oxford (2007)

  7. Hirvensalo, M.: Quantum Computing, 2nd Edit. Springer-Verlag, Berlin (2004)

  8. Horadam, K.J.: A generalised Hadamard transform. In: IEEE International Symposium on Information Theory, 2005, (ISIT 2005), pp. 1006–1008. IEEE, New York (2005)

  9. Ising E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31(1), 253–258 (1925)

    Article  Google Scholar 

  10. Kung J.P.S.: The Rédei function of a relation. J. Combin. Theory Ser. A 29(3), 287–296 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuratowski C.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  12. MacWilliams F.J.: A theorem on the distribution of weights in a systematic code. Bell System Tech. J. 42, 79–94 (1963)

    Article  MathSciNet  Google Scholar 

  13. Oxley J.G.: Matroid Theory. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  14. Robertson N., Seymour P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wagner K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)

    Article  MathSciNet  Google Scholar 

  16. Welsh D.J.A.: Matroid Theory. Academic Press, London-New York (1976)

    MATH  Google Scholar 

  17. Welsh D.J.A.: Complexity: Knots, Colourings and Counting. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Farr.

Additional information

Part of the work of this paper was done while the author was a Visiting Fellow at the Isaac Newton Institute for Mathematical Sciences, Cambridge, U.K., Jan.–Feb. 2008. An earlier version of the paper was Isaac Newton Institute Preprint No. NI09015-CSM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farr, G.E. Transforms and Minors for Binary Functions. Ann. Comb. 17, 477–493 (2013). https://doi.org/10.1007/s00026-013-0178-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0178-5

Mathematics Subject Classification

Keywords

Navigation